Methods and Means of Polarization, Mueller-Matrix, Polarization-Correlation and Fluorescence Diagnostics in Medicine

  • Chapter
  • First Online:
Digital Information Methods of Polarization, Mueller-Matrix and Fluorescent Microscopy

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 56 Accesses

Abstract

An analysis of current trends in polarimetric and fluorescence diagnostics of optically anisotropic human biological tissues and organ fluids using the vector-parametric approach based on the information-complete Mueller matrix formalism is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 32.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 42.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Wang, H.-I. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, Hoboken, New Jersey, 2007)

    Google Scholar 

  2. D. Boas, C. Pitris, N. Ramanujam, Handbook of Biomedical Optics (CRC Press, Boca Raton, London, New York, 2011)

    Google Scholar 

  3. T. Vo-Dinh, Biomedical Photonics Handbook, 2nd edn. (CRC Press, Boca Raton, 2014)

    Book  Google Scholar 

  4. V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnostics, 3rd ed., vol. PM 254 (SPIE Press, Bellingham, Washington, 2015)

    Google Scholar 

  5. N. Ghosh, I. Vitkin, Tissue polarimetry: concepts, challenges, applications and outlook. J. Biomed. Opt. 16, 110801 (2011)

    Article  ADS  Google Scholar 

  6. P. Shukla, A. Pradhan, Mueller decomposition images for cervical tissue: potential for discriminating normal and dysplastic states. Opt. Express 17, 1600–1609 (2009)

    Article  ADS  Google Scholar 

  7. X. Li, G. Yao, Mueller matrix decomposition of diffuse reflectance imaging in skeletal muscle. Appl. Opt. 48, 2625–2631 (2009)

    Article  ADS  Google Scholar 

  8. A. Pierangelo et al., Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas. J. Biomed. Opt. 18(4), 046014 (2013)

    Article  ADS  Google Scholar 

  9. E. Du et al., Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J. Biomed. Opt. 19(7), 076013 (2014)

    Article  ADS  Google Scholar 

  10. Y. Deng et al., Characterization of backscattering Mueller matrix pat- terns of highly scattering media with triple scattering assumption. Opt. Express 15(15), 9672–9680 (2007)

    Article  ADS  Google Scholar 

  11. M. Antonelli et al., Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data. Opt. Express 18(10), 10200–10208 (2010)

    Article  ADS  Google Scholar 

  12. Yu.A. Ushenko, A.P. Peresunko, B.A. Baku, A new method of mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma. Adv. Opt. Technol. 2010(952423), p. 9 (2010)

    Google Scholar 

  13. Yu. Ushenko, T. Boychuk, V. Bachynsky, O. Mincer, Diagnostics of structure and physiological state of birefringent biological tissues: statistical, correlation and topological approaches, in Handbook of Coherent-Domain Optical Methods (2013), pp. 107–148

    Google Scholar 

  14. V. Ushenko, A. Dubolazov, Correlation and self similarity structure of polycrystalline network biological layers Mueller matrices images. Proc. SPIE, 8856 (2013)

    Google Scholar 

  15. Yu. Ushenko, V. Ushenko, A. Dubolazov, V. Balanetskaya, N. Zabolotna, Mueller-matrix diagnostics of optical properties of polycrystalline networks of human blood plasma. Opt. Spectrosc. 112(6), 884-892 (2012)

    Google Scholar 

  16. V. Ushenko, Spatial-frequency polarization phasometry of biological polycrystalline networks. Opt. Mem. Neural Netw. 22(1), 56–64 (2013)

    Article  Google Scholar 

  17. V. Ushenko, N. Pavlyukovich, L. Trifonyuk, Spatial-frequency azimuthally stable cartography of biological polycrystalline networks. Int. J. Opt. 2013, 7 (2013)

    Article  Google Scholar 

  18. V. Ungurian, O. Ivashchuk, V. Ushenko, Statistical analysis of polarizing maps of blood plasma laser images for the diagnostics of malignant formations. Proc. SPIE 8338, 83381L (2011)

    Article  ADS  Google Scholar 

  19. V. Ushenko, A. Dubolazov, A. Karachevtsev, Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer. Appl. Opt. 53(10), B128–B139 (2014)

    Article  Google Scholar 

  20. Yu. Ushenko, A. Dubolazov, V. Balanetskaya, A. Karachevtsev, V. Ushenko, Wavelet-analysis of polarization maps of human blood plasma. Opt. Spectrosc. 113(3), 332–343 (2012)

    Google Scholar 

  21. A. Ushenko, N. Pashkovskaya, A. Dubolazov, Yu. Ushenko, Yu. Marchuk, V. Ushenko, Mueller matrix images of polycrystalline films of human biological fluids. Rom. Rep. Phys. 67(4), 1467–1479 (2015)

    Google Scholar 

  22. A. Dubolazov, N. Pashkovskaya, Yu. Ushenko, Yu. Marchuk, V. Ushenko, O. Novakovskaya, Birefringence images of polycrystalline films of human urine in early diagnostics of kidney pathology. Appl. Opt. 55, B85–B90 (2016)

    Google Scholar 

  23. V. Ushenko, A. Sdobnov, A. Syvokorovskaya, A. Dubolazov, O. Vanchulyak, A. Ushenko, Yu. Ushenko, M. Gorsky, M. Sidor, A. Bykov, I. Meglinski, I, 3D Mueller-matrix diffusive tomography of polycrystalline blood films for cancer diagnosis. Photonics 5(4), 54 (2018)

    Google Scholar 

  24. V. Ushenko, A. Dubolazov, L. Pidkamin, M. Sakchnovsky, A. Bodnar, Yu. Ushenko, A. Ushenko, A. Bykov, I. Meglinski, Map** of polycrystalline films of biological fluids utilizing the Jones-matrix formalism. Laser Phys. 28(2), 025602 (2018)

    Google Scholar 

  25. A. Ushenko, A. Dubolazov, G. Bodnar, V. Bachynskiy, O. Vanchulyak, Stokes-correlometry of polarization-inhomogeneous objects. Proc. SPIE 10612, 106121H (2018)

    Google Scholar 

  26. M. Sakhnovskiy, I. Martseniak, O. Tsyhykalo, A. Dubolazov, V. Ushenko, P. Grygoryshyn, Correlation structure of Stokes-parametric images of biological tissues. Proc. SPIE 10977, 109773P (2018)

    Google Scholar 

  27. O.G. Ushenko, O.V. Dubolazov, L.Y. Pidkamin, M.I. Sidor, N. Pavlyukovich, O. Pavlyukovich, Polarization-interference Jones-matrix map** of biological crystal networks. Proc. SPIE 10612, 106121G (2018)

    Google Scholar 

  28. A. Dubolazov, O. Ushenko, Yu. Ushenko, L. Pidkamin, M. Sidor, M. Grytsyuk, P. Prysyazhnyuk, Mueller matrix map** of biological polycrystalline layers using reference wave. Proc. SPIE 10612, 106121N (2018)

    Google Scholar 

  29. Yu. Ushenko, A. Dubolazov, V. Ushenko, V. Zhytaryuk, A. Prydiy, N. Pavlyukovich, O. Pavlyukovich, Statistical analysis of polarization interference images of biological fluids polycrystalline films in the tasks of optical anisotropy weak changes differentiation. Proc. SPIE 10612, 106121Q (2018)

    Google Scholar 

  30. M. Sakhnovskiy, A. Olar, M. Garazduyk, A. Syvokorovskaya, G. Bodnar, O. Tsyhykalo, A. Dubolazov, V. Ushenko, Correlation structure of Stokes parametric images of polycrystalline films of human biological fluids. Proc. SPIE 10728, 107280O (2018)

    Google Scholar 

  31. Yu. Ushenko, A. Dubolazov, O. Bodnar, B. Bodnar, L. Pidkamin, A. Prydiy, M. Sidor, I. Martseniak, O. Tsyhykalo, Holographic reconstruction of optical anisotropy of blood films and diagnostics of prostate cancer. Proc. SPIE 10977, 109773S (2018)

    Google Scholar 

  32. Y. Ushenko, O. Bakun, I. Martseniak, O. Tsyhykalo, A. Dubolazov, L. Pidkamin, O. Prydiy, I. Soltys, M. Gorsky, Polarizarion reconstruction of polycrystalline structure of biological liquid films. Proc. SPIE 10977, art. no. 109773R (2018)

    Google Scholar 

  33. V. Ushenko, O. Vanchuliak, M. Sakhnovskiy, A. Dubolazov, P. Grygoryshyn, I. Soltys, A. Olar, System of Mueller matrix polarization correlometry of biological polycrystalline layers. Proc. SPIE 10352, 103520U (2017)

    Google Scholar 

  34. V. Ushenko, O. Vanchuliak, M. Sakhnovskiy, A. Dubolazov, P. Grygoryshyn, I. Soltys, A. Olar, A. Antoniv, Polarization-interference map** of biological fluids polycrystalline films in differentiation of weak changes of optical anisotropy. Proc. SPIE 10396, 103962O (2017)

    Google Scholar 

  35. A. Dubolazov, N. Pashkovskaya, Yu. Ushenko, Yu. Marchuk, V. Ushenko, O. Novakovskaya, Birefringence images of polycrystalline films of human urine in early diagnostics of kidney pathology. App. Opt. 55(12), B85–B90 (2016)

    Google Scholar 

  36. M. Garazdyuk, V. Bachinskyi, O. Vanchulyak, A. Ushenko, O. Dubolazov, M. Gorsky, Polarization-phase images of liquor polycrystalline films in determining time of death. App. Opt. 55(12), B67–B71 (2016)

    Article  Google Scholar 

  37. Y.O. Ushenko, O.V. Dubolazov, A.O. Karachevtsev, M.P. Gorsky, Y.F. Marchuk, Wavelet analysis of Fourier polarized images of the human bile. Appl. Opt. 51, C133–C139 (2012)

    Article  Google Scholar 

  38. V.A. Ostafiev, S.P. Sakhno, S.V. Ostafiev, G.S. Tymchik, Laser diffraction method of surface roughness measurement. J. Mater. Process. Technol. N63, 871–874 (1997)

    Google Scholar 

  39. I. Chyzh, V. Kolobrodov, A. Molodyk, V. Mykytenko, G. Tymchik, R. Romaniuk, P. Kisała, A. Kalizhanova, B. Yeraliyeva, Energy resolution of dual-channel opto-electronic surveillance system, in Proceedings, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2020, vol. 11581 (Wilga, Poland, 2020), p. 115810K. https://doi.org/10.1117/12.2580338

  40. Y.O. Ushenko, Y.Y. Tomka, O.V. Dubolazov, V.O. Balanetska, A.V. Karachevtsev, A.-P. Angelsky, Wavelet-analysis for laser images of blood plasma. Adv. Electr. Comput. Eng. 11(2), 55–62 (2011). https://doi.org/10.4316/AECE.2011.02009

    Article  Google Scholar 

  41. V.A. Ushenko, B.T. Hogan, A. Dubolazov et al., 3D Mueller matrix map** of layered distributions of depolarisation degree for analysis of prostate adenoma and carcinoma diffuse tissues. Sci. Rep. 11, 5162 (2021). https://doi.org/10.1038/s41598-021-83986-4

    Article  ADS  Google Scholar 

  42. G.S. Tymchik, V.I. Skytsyuk, T.R. Klotchko, H. Bezsmertna, W. Wójcik, S. Luganskaya, Z. Orazbekov, A. Iskakova, Diagnosis abnormalities of limb movement in disorders of the nervous system, in Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2017 (2017), p. 104453S-11. https://doi.org/10.1117/12.228100

  43. Z. Hu, M. Ivashchenko, L. Lyushenko, D. Klyushnyk, Artificial neural network training criterion formulation using error continuous domain. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 13(3), 13–22 (2021). https://doi.org/10.5815/ijmecs.2021.03.02

    Article  Google Scholar 

  44. Z. Hu, I. Tereikovskyi, D. Chernyshev, L. Tereikovska, O. Tereikovskyi, D. Wang, Procedure for processing biometric parameters based on wavelet transformations. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 13(2), 11–22 (2021). https://doi.org/10.5815/ijmecs.2021.02.02

    Article  Google Scholar 

  45. Z. Hu, R. Odarchenko, S. Gnatyuk, M. Zaliskyi, A. Chaplits, S. Bondar, V. Borovik, Statistical techniques for detecting cyberattacks on computer networks based on an analysis of abnormal traffic behavior. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 12(6), 1–13 (2020). https://doi.org/10.5815/ijcnis.2020.06.01

    Article  Google Scholar 

  46. Z. Hu, S. Gnatyuk, T. Okhrimenko, S. Tynymbayev, M. Iavich, High-speed and secure PRNG for cryptographic applications. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 12(3), 1–10 (2020). https://doi.org/10.5815/ijcnis.2020.03.01

    Article  Google Scholar 

  47. Z. Hu, I. Dychka, M. Onai, Y. Zhykin, Blind payment protocol for payment channel networks. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 11(6), 22–28 (2019). https://doi.org/10.5815/ijcnis.2019.06.03

    Article  Google Scholar 

  48. Z. Hu, Y. Khokhlachova, V. Sydorenko, I. Opirskyy, Method for optimization of information security systems behavior under conditions of influences. Int. J. Intell. Syst. Appl. (IJISA) 9(12), 46–58 (2017). https://doi.org/10.5815/ijisa.2017.12.05

    Article  Google Scholar 

  49. Z. Hu, S.V. Mashtalir, O.K. Tyshchenko, M.I. Stolbovyi, Video shots’ matching via various length of multidimensional time sequences. Int. J. Intell. Syst. Appl. (IJISA) 9(11), 10–16 (2017). https://doi.org/10.5815/ijisa.2017.11.02

    Article  Google Scholar 

  50. Z. Hu, I.A. Tereykovskiy, L.O. Tereykovska, V.V. Pogorelov, Determination of structural parameters of multilayer perceptron designed to estimate parameters of technical systems. Int. J. Intell. Syst. Appl. (IJISA) 9(10), 57–62 (2017). https://doi.org/10.5815/ijisa.2017.10.07

    Article  Google Scholar 

  51. Z. Hu, Y.V. Bodyanskiy, N.Y. Kulishova, O.K. Tyshchenko, A multidimensional extended neo-fuzzy neuron for facial expression recognition. Int. J. Intell. Syst. Appl. (IJISA) 9(9), 29–36 (2017). https://doi.org/10.5815/ijisa.2017.09.04

  52. Z. Hu, I. Dychka, Y. Sulema, Y. Radchenko, Graphical data steganographic protection method based on bits correspondence scheme. Int. J. Intell. Syst. Appl. (IJISA) 9(8), 34-40 (2017). https://doi.org/10.5815/ijisa.2017.08.04

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Ushenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasyuk, V.L., Kalashnikov, A.V., Protsyuk, V.V., Gorsky, M.P., Ushenko, A.G., Zheng, J. (2023). Methods and Means of Polarization, Mueller-Matrix, Polarization-Correlation and Fluorescence Diagnostics in Medicine. In: Digital Information Methods of Polarization, Mueller-Matrix and Fluorescent Microscopy. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-4735-5_1

Download citation

Publish with us

Policies and ethics

Navigation