High-Resolution X-Ray Spectroscopy of Supernova Remnants

  • Chapter
  • First Online:
High-Resolution X-ray Spectroscopy

Part of the book series: Springer Series in Astrophysics and Cosmology ((SSAC))

  • 405 Accesses

Abstract

Thermal X-ray spectra from supernova remnants (SNRs) are dominated by a number of line emission from various elements. Resolving the individual lines is critically important for a variety of scientific topics such as diagnosing high-temperature and low-density non-equilibrium plasmas, identifying spectral features like charge exchange and resonance line scattering, revealing kinematics and elemental abundances of SN ejecta and the circumstellar medium, and studying the interstellar medium or planets’ atmospheres from extinction features seen in X-ray spectra of very bright SNRs. This chapter reviews high-resolution X-ray spectroscopy of SNRs obtained so far. Most results were derived with dispersive spectrometers aboard Einstein, Chandra, and XMM-Newton satellites. Because these dispersive spectrometers were slitless, one has to select small objects with angular sizes less than a few arcminutes to successfully perform high-resolution spectroscopy. Despite this limitation, the three satellites delivered fruitful scientific results in the last few decades. Arrays of low-temperature microcalorimeters offer excellent opportunities for high-resolution X-ray spectroscopy of SNRs, as they are non-dispersive spectrometers that work for largely extended sources as well as point-like sources. The microcalorimeter aboard the Hitomi satellite already delivered pioneering results during its short lifetime. The upcoming X-Ray Imaging and Spectroscopy Mission, which is a recovery mission of Hitomi, will truly open the new discovery window to high-resolution X-ray spectroscopy of SNRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 05 November 2023

    A correction has been published.

Notes

  1. 1.

    Note that equation (3) in [81] should be better replaced to \(v_\textrm{fs} = (1-\gamma )/2 \times v_\textrm{sg} +(1+\gamma )/2 \times v_\textrm{ej}\) to take account of the motion of the unshocked ejecta knot. This change has no impact on the interpretation related to the reverse-shock scenario. I thank Pat Slane for pointing it out.

References

  1. H. Akamatsu, W.B. Doriese, J.A.B. Mates, B.D. Jackson, in Handbook of X-ray and Gamma-ray Astrophysics, ed. by C. Bambi, A. Santangelo. Chapter XX (2022). https://doi.org/10.48550/ar**v.2209.05621

  2. D. Alp, J. Larsson, C. Fransson, ApJ 916(2), 76 (2021). https://doi.org/10.3847/1538-4357/ac052d

    Article  ADS  Google Scholar 

  3. Y. Amano, H. Uchida, T. Tanaka, L. Gu, T.G. Tsuru, ApJ 897(1), 12 (2020). https://doi.org/10.3847/1538-4357/ab90fc

    Article  ADS  Google Scholar 

  4. F.E. Bauer, V.V. Dwarkadas, W.N. Brandt, S. Immler, S. Smartt, N. Bartel, M.F. Bietenholz, ApJ 688(2), 1210 (2008). https://doi.org/10.1086/589761

    Article  ADS  Google Scholar 

  5. W. Becker, P. Tobias, P.F. Winkler, R. Petre, ApJ 755(2), 141 (2012). https://doi.org/10.1088/0004-637X/755/2/141

    Article  ADS  Google Scholar 

  6. E. Behar, A.P. Rasmussen, R.G. Griffiths, K. Dennerl, M. Audard, B. Aschenbach, A.C. Brinkman, A &A 365, L242 (2001). https://doi.org/10.1051/0004-6361:20000082

    Article  ADS  Google Scholar 

  7. E.M. Berkhuijsen, A. Fletcher, MNRAS-L 390(1), L19 (2008). https://doi.org/10.1111/j.1745-3933.2008.00526.x

    Article  ADS  Google Scholar 

  8. J. Bhalerao, S. Park, D. Dewey, J.P. Hughes, K. Mori, J.-J. Lee, ApJ 800(1), 65 (2015). https://doi.org/10.1088/0004-637X/800/1/65

    Article  ADS  Google Scholar 

  9. M.F. Bietenholz, N. Bartel, MNRAS 386(3), 1411 (2008). https://doi.org/10.1111/j.1365-2966.2008.13058.x

    Article  ADS  Google Scholar 

  10. W.P. Blair, P. Ghavamian, K.S. Long, B.J. Williams, K.J. Borkowski, S.P. Reynolds, R. Sankrit, ApJ 662(2), 998 (2007). https://doi.org/10.1086/518414

    Article  ADS  Google Scholar 

  11. W.P. Blair, P. Ghavamian, J.C. Raymond, B.J. Williams, R. Sankrit, K.S. Long, P.F. Winkler, N. Pirzkal, I.R. Seitenzahl, ApJ 902(2), 153 (2020). https://doi.org/10.3847/1538-4357/abb3c7

    Article  ADS  Google Scholar 

  12. W.P. Blair, K.S. Long, O. Vancura, ApJ 366, 484 (1991). https://doi.org/10.1086/169583

    Article  ADS  Google Scholar 

  13. R. Blandford, R. Bühler, in Handbook of Supernovae, ed. A.W. Alsabti, P. Murdin, vol. 83 (Springer, Berlin, 2017). ISBN:978-3-319-21845-8

    Google Scholar 

  14. J.A.M. Bleeker, R. Willingale, K. van der Heyden, K. Dennerl, J.S. Kaastra, B. Aschenbach, J. Vink, A &A 365, L225 (2001). https://doi.org/10.1051/0004-6361:20000048

    Article  ADS  Google Scholar 

  15. E. Bray, D.N. Burrows, S. Park, A.P. Ravi, ApJ 899(1), 21 (2020). https://doi.org/10.3847/1538-4357/ab9c9e

    Article  ADS  Google Scholar 

  16. A.C. Brinkman et al., ApJ 530(2), L111 (2000). https://doi.org/10.1086/312504

    Article  ADS  Google Scholar 

  17. A.C. Brinkman, J.J. van Rooijen, J.A.M. Bleeker, J.H. Dijkstra, J. Heise, P.A.J. de Korte, R. Mewe, F. Paerels, ApL &C 26, 73 (1987)

    ADS  Google Scholar 

  18. S. Broersen, A. Chiotellis, J. Vink, A. Bamba, MNRAS 441(4), 3040 (2014). https://doi.org/10.1093/mnras/stu667

    Article  ADS  Google Scholar 

  19. S. Broersen, J. Vink, J. Kaastra, J. Raymond, A &A 535, A11 (2011). https://doi.org/10.1051/0004-6361/201117390

    Article  Google Scholar 

  20. S. Broersen, J. Vink, M. Miceli, F. Bocchino, G. Maurin, A. Decourchelle, A &A 552, A9 (2013). https://doi.org/10.1051/0004-6361/201220526

    Article  Google Scholar 

  21. C.R. Canizares, G.W. Clark, D. Bardas, T. Markert, SPIE 106, 154 (1977). https://doi.org/10.1117/12.955467

    Article  ADS  Google Scholar 

  22. C.R. Canizares, P.F. Winkler, ApJ 246, L33 (1981). https://doi.org/10.1086/183547

    Article  ADS  Google Scholar 

  23. C.R. Canizares, J.E. Davis, D. Dewey, K.A. Flanagan, E.B. Galton, D.P. Huenemoerder, K. Ishibashi, T.H. Markert, H.L. Marshall, M. McGuirk, M.L. Schattenburg, N.S. Schulz, H.I. Smith, M. Wise, PASP 117(836), 1144 (2005). https://doi.org/10.1086/432898

    Article  ADS  Google Scholar 

  24. C.R. Canizares, K.A. Flanagan, D.S. Davis, D. Dewey, J.C. Houck, in ASP Conference Proceedings, vol. 234 (2001), p. 173. ISBN:1-58381-071-4

    Google Scholar 

  25. D. Castro, P.O. Slane, B.M. Gaensler, J.P. Hughes, D.J. Patnaude, ApJ 734(2), 86 (2011). https://doi.org/10.1088/0004-637X/734/2/86

    Article  ADS  Google Scholar 

  26. P.R. Champey et al., J. Astron. Instrum. 11, 2 (2022). https://doi.org/10.1142/S2251171722500106

    Article  Google Scholar 

  27. P. Chandra, SSR 214(1), 27 (2018). https://doi.org/10.1007/s11214-017-0461-6

    Article  ADS  Google Scholar 

  28. R.A. Chevalier, ApJ 619(2), 839 (2005). https://doi.org/10.1086/426584

    Article  ADS  Google Scholar 

  29. Y. Chiba, S. Katsuda, T. Yoshida, K. Takahashi, H. Umeda, PASJ 72(2), 25 (2020). https://doi.org/10.1093/pasj/psz148

    Article  ADS  Google Scholar 

  30. A. Decourchelle, J.L. Sauvageot, M. Audard, B. Aschenbach, S. Sembay, R. Rothenflug, J. Ballet, T. Stadlbauer, R.G. West, A &A 365, L218 (2001). https://doi.org/10.1051/0004-6361:20000115

    Article  ADS  Google Scholar 

  31. A. Decourchelle, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin, vol. 117 (Springer, Berlin, 2017) ISBN:978-3-319-21845-8

    Google Scholar 

  32. J.W. den Herder et al., A &A 365, L7 (2001). https://doi.org/10.1051/0004-6361:20000058

    Article  ADS  Google Scholar 

  33. J.R. Determan, S.A. Budzien, M.P. Kowalski, M.N. Lovellette, P.S. Ray, M.T. Wolff, K.S. Wood, L. Titarchuk, R. Bandyopadhyay, JGR: Space Phys. 112(A6), A06323 (2007). https://doi.org/10.1029/2006JA012014

  34. D. Dewey, SSR 157(1–4), 229 (2010). https://doi.org/10.1007/s11214-010-9718-z

    Article  ADS  Google Scholar 

  35. D. Dewey, F.E. Bauer, V.V. Dwarkadas, AIPC 1358, 289 (2011). https://doi.org/10.1063/1.3621791

    Article  ADS  Google Scholar 

  36. D. Dewey, V.V. Dwarkadas, F. Haberl, R. Sturm, C.R. Canizares, ApJ 752(2) (2012). https://doi.org/10.1088/0004-637X/752/2/103

  37. D. Dewey, S.A. Zhekov, R. McCray, C.R. Canizares, ApJ 676(2), L131 (2008). https://doi.org/10.1086/587549

    Article  ADS  Google Scholar 

  38. M.A. Dopita, I.R. Seitenzahl, D.C. Nicholls, F.P.A. Vogt, P. Gavamian, A.J. Ruiter, AJ 157(2), 50 (2019). https://doi.org/10.3847/1538-3881/aaf235

  39. V.V. Dwarkadas, D. Dewey, F. Bauer, MNRAS 407(2), 812 (2010). https://doi.org/10.1111/j.1365-2966.2010.16966.x

    Article  ADS  Google Scholar 

  40. J.T. Emmert et al., ESS 8(3), e01321 (2021). https://doi.org/10.1029/2020EA001321

    Article  Google Scholar 

  41. Y. Ezoe, T. Ohashi, K. Mitsuda, Rev. Mod. Plasma Phys. 5(1), 4 (2021). https://doi.org/10.1007/s41614-021-00052-2

    Article  ADS  Google Scholar 

  42. R.A. Fesen, K.E. Weil, I.A. Cisneros, W.P. Blair, J.C. Raymond, MNRAS 507(1), 244 (2021). https://doi.org/10.1093/mnras/stab2066

    Article  ADS  Google Scholar 

  43. S.L. Finkelstein et al., ApJ 641(2), 919 (2006). https://doi.org/10.1086/500570

    Article  ADS  Google Scholar 

  44. K.A. Flanagan, C.R. Canizares, D. Dewey, J.C. Houck, A.C. Fredericks, M.L. Schattenburg, T.H. Markert, D.S. Davis, ApJ 605(1), 230 (2004). https://doi.org/10.1086/382145

    Article  ADS  Google Scholar 

  45. M. Fraser, D. Boubert, ApJ 871(1), 92 (2019). https://doi.org/10.3847/1538-4357/aaf6b8

    Article  ADS  Google Scholar 

  46. B.M. Gaensler, S.P. Hendrick, S.P. Reynolds, K.J. Borkowski, ApJ 594(2), L111 (2003). https://doi.org/10.1086/378687

    Article  ADS  Google Scholar 

  47. B.M. Gaensler, B.J. Wallace, ApJ 594(1), 326 (2003). https://doi.org/10.1086/376861

    Article  ADS  Google Scholar 

  48. P. Ghavamian, C.E. Rakowski, J.P. Hughes, T.B. Williams, ApJ 590(2), 833 (2003). https://doi.org/10.1086/375161

    Article  ADS  Google Scholar 

  49. F. Gok, A. Sezer, MNRAS 419(2), 1603 (2012). https://doi.org/10.1111/j.1365-2966.2011.19822.x

    Article  ADS  Google Scholar 

  50. D. Graczyk et al., ApJ 904(1), 13 (2020). https://doi.org/10.3847/1538-4357/abbb2b

    Article  ADS  Google Scholar 

  51. E. Greco, et al., ApJ 931(2) (2022). https://doi.org/10.3847/1538-4357/ac679d

  52. R. Giacconi et al., ApJ 230, 540 (1979). https://doi.org/10.1086/157110

    Article  ADS  Google Scholar 

  53. L. Gu, C. Shah, This Book (2023). https://doi.org/10.48550/ar**v.2301.11335

  54. F. Haberl, U. Geppert, B. Aschenbach, G. Hasinger, A &A 460(3), 811 (2006). https://doi.org/10.1051/0004-6361:20066198

    Article  ADS  Google Scholar 

  55. K. Heng, F. Haberl, B. Aschenbach, G. Hasinger, ApJ 676(1), 361 (2008). https://doi.org/10.1086/526517

    Article  ADS  Google Scholar 

  56. F. Haberl, M.D. Filipovi, L.M. Bozzetto, E.J. Crawford, S.D. Points, W. Pietsch, A.Y. De Horta, N. Tothill, J.L. Payne, M. Sasaki, A &A 543, A154 (2012). https://doi.org/10.1051/0004-6361/201218971

    Article  Google Scholar 

  57. Hitomi Collaboration, PASJ 70(2), 16 (2017). https://doi.org/10.1093/pasj/psx151

    Article  Google Scholar 

  58. Hitomi Collaboration, PASJ 70(2), 14 (2018). https://doi.org/10.1093/pasj/psx072

    Article  ADS  Google Scholar 

  59. Hitomi Collaboration, PASJ 70(3), 38 (2018). https://doi.org/10.1093/pasj/psy027

    Article  ADS  Google Scholar 

  60. J. Hoffman, B.T. Draine, ApJ 817(2), 139 (2016). https://doi.org/10.3847/0004-637X/817/2/139

    Article  ADS  Google Scholar 

  61. S.S. Holt, E.V. Gotthelf, H. Tsunemi, H. Negoro, PASJ 46(46), L151 (1994)

    ADS  Google Scholar 

  62. L. Hovey, J.P. Hughes, K. Eriksen 809(2), 119 (2015). https://doi.org/10.1088/0004-637X/809/2/119

    Article  Google Scholar 

  63. J.P. Hughes, M. Rafelski, J.S. Warren, C. akowski, P. Slane, D. Burrows, J. Nousek, ApJ 645(2), L117 (2006). https://doi.org/10.1086/506323

  64. U. Hwang, S.S. Holt, R. Petre, ApJ 537(2), L119 (2000). https://doi.org/10.1086/312776

    Article  ADS  Google Scholar 

  65. U. Hwang, J.P. Hughes, C.R. Canizares, T.H. Markert, ApJ 414, 219 (1993). https://doi.org/10.1086/173070

    Article  ADS  Google Scholar 

  66. U. Hwang, R. Petre, K.A. Flanagan, ApJ 767(1), 378 (2008). https://doi.org/10.1086/528925

    Article  ADS  Google Scholar 

  67. U. Hwang, A.E. Szymkowiak, R. Petre, S.S. Holt, ApJ 560(2), L175 (2001). https://doi.org/10.1086/324177

    Article  ADS  Google Scholar 

  68. Y. Ishisaki et al., SPIE 12181, 121811S (2022). https://doi.org/10.1117/12.2630654

    Article  Google Scholar 

  69. F. Jansen, D. Lumb, B. Altieri, J. Clavel, M. Ehle, C. Erd, C. Gabriel, M. Guainazzi, P. Gondoin, R. Much, R.R. Munoz, M. Santos, N. Schartel, D. Texier, G. Vacanti, A &A 365, L1 (2001). https://doi.org/10.1051/0004-6361:20000036

    Article  ADS  Google Scholar 

  70. J.S. Kaastra, R. Mewe, H. Nieuwenhuijzen, in 11th Colloquium on UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas, vol. 411 (Bibcode:1996uxsa.conf.411K)

    Google Scholar 

  71. J.S. Kaastra, C.P. de Vries, E. Costantini, J.W.A. den Herder, A &A 497(1), 291 (2009). https://doi.org/10.1051/0004-6361/20077892

    Article  ADS  Google Scholar 

  72. J.S. Kaastra, R. Mewe, A &A 302, L13 (1995) (Bibcode:1995A &A...302L..13K)

    Google Scholar 

  73. A.I. Karakas, M. Lugaro, ApJ 825(1), 26 (2016). https://doi.org/10.3847/0004-637X/825/1/26

    Article  ADS  Google Scholar 

  74. T. Kasuga, J. Vink, S. Katsuda, H. Uchida, A. Bamba, T. Sato, J.P. Hughes, ApJ 915(1), 42 (2021). https://doi.org/10.3847/1538-4357/abff4f

    Article  ADS  Google Scholar 

  75. S. Katsuda, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin, vol. 63 (Springer, Berlin, 2017). ISBN:978-3-319-21845-8

    Google Scholar 

  76. S. Katsuda, T. Enoto, A.N. Lonmen, K. Mori, Y. Motizuki, M. Nakajima, N.C. Ruhl, K. Sato, G. Stober, M.S. Tashiro, Y. Terada, K.S. Wood, JGR: Space Phys. 128(2), e2022JA030797 (2023). https://doi.org/10.1029/2022JA030797

  77. S. Katsuda, H. Fujiwara, Y. Ishisaki, Y. Maeda, K. Mori, Y. Motizuki, K. Sato, M.S. Tashiro, Y. Terada, JGR: Space Phys. 126(4), e28886 (2021). https://doi.org/10.1029/2020JA028886

  78. S. Katsuda, U. Hwang, R. Petre, S. Park, K. Mori, H. Tsunemi, ApJ 714(2), 1725 (2010). https://doi.org/10.1088/0004-637X/714/2/1725

    Article  ADS  Google Scholar 

  79. S. Katsuda, K. Mori, K. Maeda, M. Tanaka, K. Koyama, H. Tsunemi, H. Nakajima, Y. Maeda, M. Ozaki, R. Petre, ApJ 808(1), 49 (2015). https://doi.org/10.1088/0004-637X/808/1/49

    Article  ADS  Google Scholar 

  80. S. Katsuda, K. Mori, H. Tsunemi, S. Park, U. Hwang, D.N. Burrows, J.P. Hughes, P.O. Slane, ApJ 678(1), 297 (2008). https://doi.org/10.1086/586891

    Article  ADS  Google Scholar 

  81. S. Katsuda, Y. Ohira, K. Mori, H. Tsunemi, H. Uchida, K. Koyama, T. Tamagawa, ApJ 768(2), 182 (2013). https://doi.org/10.1088/0004-637X/768/2/182

    Article  ADS  Google Scholar 

  82. S. Katsuda, H. Tsunemi, K. Mori, H. Uchida, H. Kosugi, M. Kimura, H. Nakajima, S. Takakura, R. Petre, J.W. Hewitt, H. Yamaguchi, ApJ 730(1), 24 (2011). https://doi.org/10.1088/0004-637X/730/1/24

    Article  ADS  Google Scholar 

  83. S. Katsuda, H. Tsunemi, K. Mori, H. Uchida, R. Petre, S. Yamada, H. Akamatsu, S. Konami, T. Tamagawa, ApJ 756(1), 49 (2012). https://doi.org/10.1088/0004-637X/756/1/49

    Article  ADS  Google Scholar 

  84. R.L. Kelley et al., SPIE 9905, 99050V (2016). https://doi.org/10.1117/12.2232509

    Article  Google Scholar 

  85. B.-C. Koo, C. Park, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin, vol. 161 (Springer, Berlin, 2017). ISBN:978-3-319-21845-8

    Google Scholar 

  86. B.S. Koribalski, et al., AJ 128(1), 16 (2004). https://doi.org/10.1086/421744

  87. D. Kosenko, E.A. Helder, J. Vink, A &A 519, A11 (2010). https://doi.org/10.1051/0004-6361/200913903

    Article  Google Scholar 

  88. D. Kosenko, W. Hillebrandt, M. Kromer, S.I. Blinnikov, R. Pakmor, J.S. Kaastra, MNRAS 449(2), 1441 (2015). https://doi.org/10.1093/mnras/stv348

    Article  ADS  Google Scholar 

  89. D. Kosenko, J. Vink, S. Blinnikov, A. Rasmussen, A &A 490(1), 223 (2008). https://doi.org/10.1051/0004-6361:200809495

    Article  ADS  Google Scholar 

  90. Y. Koshiba, H. Uchida, T. Tanaka, Y. Amano, H. Sano, T.G. Tsuru, PASJ 74(4), 757 (2022). https://doi.org/10.1093/pasj/psac033

    Article  ADS  Google Scholar 

  91. O. Krause, M. Tanaka, T. Usuda, T. Hattori, M. Goto, S. Birkmann, K. Nomoto, Nature 456(7222), 617 (2008). https://doi.org/10.1038/nature07608

    Article  ADS  Google Scholar 

  92. H. Kuncarayakti, K. Maeda, J.P. Anderson, M. Hamuy, K. Nomoto, L. Galbany, M. Doi, MNRAS 458(2), 2063 (2016). https://doi.org/10.1093/mnras/stw430

    Article  ADS  Google Scholar 

  93. R. Lallemen, A &A 422, 391 (2004). https://doi.org/10.1051/0004-6361:20035625

    Article  ADS  Google Scholar 

  94. H.J.G.L.M. Lamers, A. Nota, N. Panagia, L.J. Smith, N. Langer, ApJ 551(2), 764 (2001). https://doi.org/10.1086/320229

  95. J.S. Lazendic, D. Dewey, N.S. Schulz, C.R. Canizares, ApJ 651(1), 250 (2006). https://doi.org/10.1086/507481

    Article  ADS  Google Scholar 

  96. K. Lodders, ApJ 591(2), 1220 (2003). https://doi.org/10.1086/375492

    Article  ADS  Google Scholar 

  97. K. Lodders, H. Palme, H.-P. Gail, Sol. Syst. 4B, 712 (2009). https://doi.org/10.1007/978-3-540-88055-4_34

    Article  Google Scholar 

  98. K.S. Lum, C.R. Canizares, G.W. Clark, J.M. Coyne, T.H. Markert, P.J. Saez, M.L. Schattenburg, P.F. Winkler, ApJS 78, 423 (1992). https://doi.org/10.1086/191635

    Article  ADS  Google Scholar 

  99. P. Lundqvist, N. Lundqvist, Y.A. Shibanov, A &A 658, A30 (2022). https://doi.org/10.1051/0004-6361/202141931

    Article  Google Scholar 

  100. E. Marietta, A. Burrows, B. Fryxell, ApJS 128, 615 (2000). https://doi.org/10.1086/313392

    Article  ADS  Google Scholar 

  101. T.H. Markert, C.R. Canizares, G.W. Clark, P.F. Winkler, ApJ 268, 134 (1983). https://doi.org/10.1086/160939

    Article  ADS  Google Scholar 

  102. C/W. Mauche, P. Gorenstein, ApJ 336, 843 (1989). https://doi.org/10.1086/167055

  103. R. McCray, C. Fransson, ARA &A 54, 19 (2016). https://doi.org/10.1146/annurev-astro-082615-105405

    Article  ADS  Google Scholar 

  104. M. Miceli, S. Orlando, D.N. Burrows, K.A. Frank, C. Argiroffi, F. Reale, G. Peres, O. Petruk, F. Bocchino, Nat. Astron. 3, 236 (2019). https://doi.org/10.1038/s41550-018-0677-8

    Article  ADS  Google Scholar 

  105. E. Michael, S. Zhekov, R. McCray, U. Hwang, D.N. Burrows, S. Park, G.P. Garmire, S.S. Holt, G. Hasinger, ApJ 574(1), 166 (2002). https://doi.org/10.1086/340591

    Article  ADS  Google Scholar 

  106. M.J. Millard, J. Bhalerao, S. Park, T. Sato, J.P. Hughes, P. Slane, D. Patnaude, D.N. Burrows, C. Badenes, ApJ 893(2), 98 (2020). https://doi.org/10.3847/1538-4357/ab7db1

    Article  ADS  Google Scholar 

  107. M.J. Millard, S. Park, T. Sato, J.P. Hughes, P. Slane, D. Patnaude, D.N. Burrows, C. Badenes, ApJ 937(2), 121 (2022). https://doi.org/10.3847/1538-4357/ac8f30

    Article  ADS  Google Scholar 

  108. E. Miyata, H. Tsunemi, R. Pisarski, S.E. Kissel, PASJ 46, L101 (1994)

    ADS  Google Scholar 

  109. K. Mori, H. Tsunemi, H. Katayama, D.N. Burrows, G.P. Garmire, A.E. Metzger, ApJ 607(2), 1065 (2004). https://doi.org/10.1086/383521

    Article  ADS  Google Scholar 

  110. T. Morris, P. Podsiadlowski, MNRAS 399(2), 515 (2009). https://doi.org/10.1111/j.1365-2966.2009.15114.x

    Article  ADS  Google Scholar 

  111. M. Ozawa, K. Koyama, H. Yamaguchi, K. Masai, T. Tamagawa, ApJL 706(1), L71 (2009). https://doi.org/10.1088/0004-637X/706/1/L71

    Article  ADS  Google Scholar 

  112. J. Quirola-Váisquez, F.E. Bauer, V.V. Dwarkadas, C. Badenes, W.N. Brandt, T. Nymark, D. Walton, MNRAS 490(4), 4536 (2019). https://doi.org/10.1093/mnras/stz2858

    Article  ADS  Google Scholar 

  113. F. Paerels, SSR 157(1–4), 15 (2010). https://doi.org/10.1007/s11214-010-9719-y

    Article  ADS  Google Scholar 

  114. F.B.S. Paerels, S.M. Kahn, ARA &A 41, 291 (2003). https://doi.org/10.1146/annurev.astro.41.071601.165952

    Article  ADS  Google Scholar 

  115. S. Park, J.P. Hughes, D.N. Burrows, P.O. Slane, J.A. Nousek, G.P. Garmire, ApJ 598(2), L95 (2003). https://doi.org/10.1086/380599

    Article  ADS  Google Scholar 

  116. S. Park, J.P. Hughes, P.O. Slane, D.N. Burrows, J.-J. Lee, K. Mori, ApJ 748(2), 117 (2012). https://doi.org/10.1088/0004-637X/748/2/117

    Article  ADS  Google Scholar 

  117. G. Pietrzyński et al., Nature 567(7747), 200 (2019). https://doi.org/10.1038/s41586-019-0999-4

    Article  ADS  Google Scholar 

  118. C. Pinto, J.S. Kaastra, E. Constantini, C. de Vries, A &A 551, A25 (2013). https://doi.org/10.1051/0004-6361/201220481

    Article  Google Scholar 

  119. P.P. Plucinsky, A.P. Beardmore, A. Foster, F. Haberl, E.D. Miller, A.M.T. Pollock, S. Sembay, A &A 597, A35 (2017). https://doi.org/10.1051/0004-6361/201628824

    Article  Google Scholar 

  120. D. Porquet, J. Dubau, N. Grosso, SSR 157(1–4), 103 (2010). https://doi.org/10.1007/s11214-010-9731-2

    Article  ADS  Google Scholar 

  121. P. Predehl, J.H.M.M. Schmitt, A &A 293, 889 (1995)

    ADS  Google Scholar 

  122. I. Psaradaki, E. Costantini, M. Mehdipour, D. Rogantini, C.P. de Vries, F. de Groot, H. Mutschke, S. Trasobares, L.B.F.M. Waters, S.T. Zeegers, A &A 642, A208 (2020). https://doi.org/10.1051/0004-6361/202038749

    Article  Google Scholar 

  123. G. Qing, W. Wang, J.-F. Liu, P. Yoachim, ApJ 799(1), 19 (2015). https://doi.org/10.1088/0004-637X/799/1/19

    Article  ADS  Google Scholar 

  124. A. Rahmati, D.E. Larson, T.E. Cravens, R.J. Lillis, C.O. Lee, P.A. Dunn, GRL 47(21), e88927 (2020). https://doi.org/10.1029/2020GL088927

    Article  ADS  Google Scholar 

  125. S. Ranasinghe, D.A. Leahy, AJ 155(5), 204 (2018). https://doi.org/10.3847/1538-3881/aab9be

  126. S. Ranasinghe, D. Leahy, ApJ 940(1), 63 (2022). https://doi.org/10.3847/1538-4357/ac940a

    Article  ADS  Google Scholar 

  127. A.P. Rasmussen, E. Behar, S.M. Kahn, J.W. den Herder, K. van der Heyden, A &A 365, L231 (2001). https://doi.org/10.1051/0004-6361:20000231

    Article  ADS  Google Scholar 

  128. A.P. Ravi, S. Park, S.A. Zhekov, M. Miceli, S. Orlando, K.A. Frank, D.N. Burrows, ApJ 922(2), 140 (2021). https://doi.org/10.3847/1538-4357/ac249a

    Article  ADS  Google Scholar 

  129. A. Rest et al., Nature 438(7071), 1132 (2005). https://doi.org/10.1038/nature04365

    Article  ADS  Google Scholar 

  130. E.M. Reynoso, S. Cichowolski, A.J. Walsh, MNRAS 464(3), 3029 (2017). https://doi.org/10.1093/mnras/stw2219

    Article  ADS  Google Scholar 

  131. M. Ross, V.V. Dwarkadas, ApJ 153(6), 246 (2017). https://doi.org/10.3847/1538-3881/aa6d50

    Article  Google Scholar 

  132. P. Ruiz-Lapuente, J.I. González Hernández, R. Mor, M. Romero-Gómez, N. Miret-Roig, F. Figueras, L.R. Bedin, R. Canal, J. Méndez, ApJ 870(2), 135 (2019). https://doi.org/10.3847/1538-4357/aaf1c1

  133. J. Rutherford, D. Dewey, E. Figueroa-Feliciano, S.N.T. Heine, F.A. Bastien, S. Kosuke, C.R. Canizares, ApJ 769(1), 64 (2013). https://doi.org/10.1088/0004-637X/769/1/64

    Article  ADS  Google Scholar 

  134. S. Ryder, R. Kotak, I.A. Smith, S.J. Tingay, E.C. Kool, J. Polshaw, A &A 595, L9 (2016). https://doi.org/10.1051/0004-6361/201629763

    Article  ADS  Google Scholar 

  135. S. Ryder, L. Staveley-Smith, M. Dopita, R. Petre, E. Colbert, D. Malin, E. Schlegel, ApJ 416, 167 (1993). https://doi.org/10.1086/173223

    Article  ADS  Google Scholar 

  136. T. Sato, J.P. Hughes, ApJ 840(2), 112 (2017). https://doi.org/10.3847/1538-4357/aa6f60

    Article  ADS  Google Scholar 

  137. T. Sato, J.P. Hughes, ApJ 845(2), 167 (2017). https://doi.org/10.3847/1538-4357/aa8305

    Article  ADS  Google Scholar 

  138. K. Sato, Y. Uchida, K. Ishikawa, This Book (2023) https://doi.org/10.48550/ar**v.2303.01642

  139. S.L. Savage, A.R. Winebarger, K. Kobayashi et al., ApJ 945(2), 105 (2023). https://doi.org/10.3847/1538-4357/acbb58

    Article  ADS  Google Scholar 

  140. M.L. Schattenburg, C.R. Canizares, C.J. Berg, G.W. Clark, T.H. Markert, P.F. Winkler, ApJ 241, L151 (1980). https://doi.org/10.1086/183380

    Article  ADS  Google Scholar 

  141. M.L. Schattenburg, C.R. Canizares, ApJ 301, 759 (1986). https://doi.org/10.1086/163942

    Article  ADS  Google Scholar 

  142. F.D. Seward, A.R. Foster, R.K. Smith, S.D. Points, ApJ 909(1), 13 (2021). https://doi.org/10.3847/1538-4357/abd561

    Article  ADS  Google Scholar 

  143. F.D. Seward, P. Gorenstein, R.K. Smith, ApJ 636(2), 873 (2006). https://doi.org/10.1086/498105

    Article  ADS  Google Scholar 

  144. F.D. Seward, R.K. Smith, P.O. Slane, S.S. Murray, S.D. Points, A.J.R. Gordon, J.R. Dickel, ApJ 861(2), 154 (2018). https://doi.org/10.3847/1538-4357/aabf43

    Article  ADS  Google Scholar 

  145. S.-S. Shan, H. Zhu, W.-W. Tian, H.-Y. Zhang, A.-Y. Yang, M.-F. Zhang, RAA 19(7), 92 (2019). https://doi.org/10.1088/1674-4527/19/7/92

    Article  ADS  Google Scholar 

  146. L.J. Smith, ASPC 120, 310 (1997) (Bibcode:1997ASPC..120..310S)

    Google Scholar 

  147. R. Smith et al., ASTRO-H White Paper (2014). ar**v:1412.1172

  148. R. Sturm, F. Haberl, B. Aschenbach, G. Hasinger, A &A 515, A5 (2010). https://doi.org/10.1051/0004-6361/200913317

    Article  Google Scholar 

  149. L. Sun, J. Vink, Y. Chen, P. Zhou, D. Prokhorov, G. Pühlhofer, D. Malyshev, ApJ 916(1), 41 (2021). https://doi.org/10.3847/1538-4357/ac033d

    Article  ADS  Google Scholar 

  150. H. Suzuki, H. Yamaguchi, M. Ishida, H. Uchida, P.P. Plucinsky, A.R. Foster, E.D. Miller, ApJ 900(1), 39 (2020). https://doi.org/10.3847/1538-4357/aba524

    Article  ADS  Google Scholar 

  151. T. Takahashi et al., JATIS 4, 021402 (2018). https://doi.org/10.1117/1.JATIS.4.2.021402

    Article  ADS  Google Scholar 

  152. Y. Tanaka, H. Uchida, T. Tanaka, Y. Amano, Y. Koshiba, T.G. Tsuru, H. Sano, Y. Fukui, ApJ 933(1), 101 (2022). https://doi.org/10.3847/1538-4357/ac738f

    Article  ADS  Google Scholar 

  153. M.S. Tashiro et al., SPIE 11444, 1144422 (2020). https://doi.org/10.1117/12.2565812

    Article  Google Scholar 

  154. D. Tateishi, S. Katsuda, Y. Terada, F. Acero, T. Yoshida, S. Fujimoto, H. Sano, ApJ 923(2), 187 (2021). https://doi.org/10.3847/1538-4357/ac2c00

    Article  ADS  Google Scholar 

  155. H. Tsunemi, K. Yamashita, K. Masai, S. Hayakawa, K. Koyama, ApJ 306, 248 (1986). https://doi.org/10.1086/164337

    Article  ADS  Google Scholar 

  156. H. Uchida, S. Katsuda, H. Tsunemi, K. Mori, L. Gu, R.S. Cumbee, R. Petre, T. Tanaka, ApJ 871(2), 234 (2019). https://doi.org/10.3847/1538-4357/aaf8a6

    Article  ADS  Google Scholar 

  157. L.A. Valencic, R.K. Smith, ApJ 809(1), 66 (2015). https://doi.org/10.1088/0004-637X/809/1/66

    Article  ADS  Google Scholar 

  158. K.J. van der Heyden, E. Behar, J. Vink, J.A.P. Rasmussen, J.S. Kaastra, J.A.M. Bleeker, S.M. Kahn, R. Mewe, A &A 392, 955 (2002). https://doi.org/10.1051/0004-6361:20020963

    Article  ADS  Google Scholar 

  159. K.J. van der Heyden, J.A.M. Bleeker, J.S. Kaastra, A &A 421, 1031 (2004). https://doi.org/10.1051/0004-6361:20034156

    Article  ADS  Google Scholar 

  160. K.J. van der Heyden, J.A.M. Bleeker, J.S. Kaastra, J. Vink, A &A 406, 141 (2003). https://doi.org/10.1051/0004-6361:20030658

    Article  ADS  Google Scholar 

  161. K.J. van der Heyden, F. Paerels, J. Cottam, J.S. Kaastra, G. Branduardi-Raymont, A &A 365, L254 (2001). https://doi.org/10.1051/0004-6361:20000113

    Article  ADS  Google Scholar 

  162. P.W. Vedder, C.R. Canizares, T.H. Markert, A.K. Pradhan, ApJ 307, 269 (1986). https://doi.org/10.1086/164413

    Article  ADS  Google Scholar 

  163. J. Vink, AIPC 774, 241 (2005). https://doi.org/10.1063/1.1960935

    Article  ADS  Google Scholar 

  164. J. Vink, A &ARv 20, 49 (2012). https://doi.org/10.1007/s00159-011-0049-1

    Article  ADS  Google Scholar 

  165. J. Vink, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin, vol. 139 (Springer, Berlin, 2017). ISBN:978-3-319-21845-8

    Google Scholar 

  166. J. Vink, J. Bleeker, J.S. Kaastra, A. Rasmussen, Nuc. Phys. B Proc. Suppl. 132, 62 (2004). https://doi.org/10.1016/j.nuclphysbps.2004.04.009

    Article  ADS  Google Scholar 

  167. J. Vink, J. Bleeker, K. van der Heyden, A. Bykov, A. Bamba, R. Yamazaki, ApJL 648(1), L33 (2006). https://doi.org/10.1086/507628

    Article  ADS  Google Scholar 

  168. J. Vink, J.M. Laming, M.F. Gu, A. Rasmussen, J.S. Kaastra, ApJ 587(1), L31 (2003). https://doi.org/10.1086/375125

    Article  ADS  Google Scholar 

  169. F. Vogt, M.A. Dopita, ApSS 331(2), 521 (2011). https://doi.org/10.1007/s10509-010-0479-7

    Article  ADS  Google Scholar 

  170. Z.R. Wang, Q.-Y. Qu, Y. Chen, A &AL 318, L59 (1997). 1997A &A...318L.59W

    Google Scholar 

  171. M.C. Weisskopf, B. Brinkman, B.C. Canizares, G. Garmire, S. Murray, L.P. Van Speybroeck, PASP 114(791), 1 (2002). https://doi.org/10.1086/338108

    Article  ADS  Google Scholar 

  172. M.C. Weisskopf, S.L. O’Dell, F. Paerels, R.F. Elsner, W. Becker, A.F. Tennant, D.A. Swartz, ApJ 601(2), 1050 (2004). https://doi.org/10.1086/380600

    Article  ADS  Google Scholar 

  173. M.C. Weisskopf, A.F. Tennant, D.G. Yakovloev, A. Harding, V.E. Zavlin, S.L. O’Dell, R.F. Ronald, W. Becker, ApJ 743(2), 139 (2011). https://doi.org/10.1088/0004-637X/743/2/139

    Article  ADS  Google Scholar 

  174. B.J. Williams, W.P. Blair, K.J. Borkowski, P. Ghavamian, S.P. Hendrick, K.S. Long, R. Petre, J.C. Raymond, A. Rest, S.P. Reynolds, R. Sankrit, I.R. Seitenzahl, P.F. Winkler, ApJL 865(2), L13 (2018). https://doi.org/10.3847/2041-8213/aae08d

    Article  ADS  Google Scholar 

  175. B.J. Williams, K.J. Borkowski, S.P. Reynolds, P. Ghavamian, J.C. Raymond, K.S. Long, W.P. Blair, R. Sankrit, R.C. Smith, S. Points, P.F. Winkler, S.P. Hendrick, ApJ 729(1), 65 (2011). https://doi.org/10.1088/0004-637X/729/1/65

    Article  ADS  Google Scholar 

  176. B.J. Williams, K.J. Borkowski, S.P. Reynolds, P. Ghavamian, J.C. Raymond, K.S. Long, W.P. Blair, R. Sankrit, P.F. Winkler, S.P. Hendrick, ApJ 790(2), 139 (2014). https://doi.org/10.1088/0004-637X/790/2/139

    Article  ADS  Google Scholar 

  177. B.J. Williams, P. Ghavamian, I.R. Seitenzahl, S.P. Reynolds, K.J. Borkowski, R. Petre, ApJ 935(2), 78 (2022). https://doi.org/10.3847/1538-4357/ac81ca

    Article  ADS  Google Scholar 

  178. B.J. Williams, S. Katsuda, R. Cumbee, R. Petre, J.C. Raymond, H. Uchida, ApJL 898(2), L51 (2020). https://doi.org/10.3847/2041-8213/aba7c1

    Article  ADS  Google Scholar 

  179. R. Willingale, J.A.M. Bleeker, K.J. van der Heyden, J.S. Kaastra, J. Vink, A &A 381, 1039 (2002). https://doi.org/10.1051/0004-6361:20011614

    Article  ADS  Google Scholar 

  180. J. Wilms, A. Allen, R. McCray, ApJ 542(2), 914 (2000). https://doi.org/10.1086/317016

    Article  ADS  Google Scholar 

  181. P.F. Winkler, G.W. Clark, T.H. Markert, K. Kalata, H.M. Schnopper, C.R. Canizares, ApJ 246, L27 (1981). https://doi.org/10.1086/183546

    Article  ADS  Google Scholar 

  182. P.F. Winkler, G.W. Clark, T.H. Markert, R. Petre, C.R. Canizares, ApJ 245, 574 (1981). https://doi.org/10.1086/158832

    Article  ADS  Google Scholar 

  183. P.F. Winkler, K. Twelker, C.N. Reith, K.S. Long, ApJ 692(2), 1489 (2009). https://doi.org/10.1088/0004-637X/692/2/1489

    Article  ADS  Google Scholar 

  184. M.W. Wise, C.L. Sarazin, ApJ 345, 384 (1989). https://doi.org/10.1086/167913

    Article  ADS  Google Scholar 

  185. L. **, T.J. Gaetz, P.P. Plucinsky, J.P. Hughes, D.J. Patnaude, ApJ 874(1), 14 (2019). https://doi.org/10.3847/1538-4357/ab09ea

    Article  ADS  Google Scholar 

  186. W. Xue et al., ApJS 264(1), 5 (2023). https://doi.org/10.3847/1538-4365/ac9f16

    Article  ADS  Google Scholar 

  187. H. Yamaguchi, F. Acero, C.-J. Li, Y.-H. Chu, ApJL 910(2), L24 (2021). https://doi.org/10.3847/2041-8213/abee8a

    Article  ADS  Google Scholar 

  188. H. Yamaguchi, K. Koyama, S. Katsuda, H. Nakajima, J.P. Hughes, A. Bamba, J.S. Hiraga, K. Mori, M. Ozaki, T.G. Tsuru, PASJ 60(SP1), 141 (2008)

    Article  ADS  Google Scholar 

  189. H. Yamaguchi, M. Ozawa, K. Koyama, K. Masai, J.S. Hiraga, M. Ozaki, D. Yonetoku, ApJL 705(1), L6 (2009). https://doi.org/10.1088/0004-637X/705/1/L6

    Article  ADS  Google Scholar 

  190. D. Yu, H. Li, B. Li, M. Ge, Y. Tuo, X. Li, W. Xue, Y. Liu, A. Wang, Y. Zhu, L. Bingxian, AMT 15(10), 3141 (2022). https://doi.org/10.5194/amt-15-3141-2022

    Article  ADS  Google Scholar 

  191. D. Yu, H. Li, B. Li, M. Ge, Y. Tuo, X. Li, W. Xue, Y. Liu, ASR 69(9), 3426–3434 (2022). https://doi.org/10.1016/j.asr.2022.02.030

    Article  Google Scholar 

  192. S.A. Zhekov, R. McCray, K.J. Borkowski, D.N. Burrows, S. Park, ApJ 628(2), L127 (2005). https://doi.org/10.1086/432794

    Article  ADS  Google Scholar 

  193. S.A. Zhekov, R. McCray, K.J. Borkowski, D.N. Burrows, S. Park, ApJ 645(1), 293 (2006). https://doi.org/10.1086/504285

    Article  ADS  Google Scholar 

  194. S.A. Zhekov, R. McCray, D. Dewey, C.R. Canizares, K.J. Borkowski, D.N. Burrows, S. Park, ApJ 692(2), 1190 (2009). https://doi.org/10.1088/0004-637X/692/2/1190

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am grateful to Dr. Casey T. DeRoo and Dr. Takashi Okajima for their kind explanations on X-ray grating spectrometers and X-ray optics. I would also like to thank Dr. Hiroyuki Uchida for a long-term collaboration on high-resolution X-ray spectroscopy of SNRs and for providing me with the idea for Fig. 13.1. This work was supported by the Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, No. JP20K20935, JP20H00174, and JP21H01121. I also deeply appreciate the Observational Astrophysics Institute at Saitama University for supporting the research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Katsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Katsuda, S. (2023). High-Resolution X-Ray Spectroscopy of Supernova Remnants. In: Bambi, C., Jiang, J. (eds) High-Resolution X-ray Spectroscopy. Springer Series in Astrophysics and Cosmology. Springer, Singapore. https://doi.org/10.1007/978-981-99-4409-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4409-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4408-8

  • Online ISBN: 978-981-99-4409-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation