Non-traditional New Structure Devices

  • Reference work entry
  • First Online:
Handbook of Integrated Circuit Industry

Abstract

With the rapid development of the integrated circuit (IC) process technology, IC device technology has made great advances. A variety of new structural and new principle devices are proposed to meet the needs of device technology and application development. This chapter focuses on the introduction to non-traditional new structures and new principles of logic and storage devices for the ultra-low power consumption application, such as gate-all-around (GAA) device, tunneling field-effect transistor (TFET), negative capacitive FET, magnetoresistive random-access memory (MRAM), phase-change random-access memory (PCRAM), resistive random-access memory (RRAM), etc. The structure and working principle of the devices are described. It is expected the new devices play an important role in the field of ultra-low power consumption application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Cui, Z. Zhong, D. Wang, et al., Nano Lett. 3(2), 149–152 (2003)

    Article  Google Scholar 

  2. H. T. Lue, T. H. Hsu, Y. H. Hsiao, et al., Symposium on VLSI Technology, June 15–17, 2010, Honolulu, p.131

    Google Scholar 

  3. F. Qiao, L. Pan, P. Blomme, et al., IEEE Trans. Nucl. Sci. 61(2), 955–960 (2014)

    Article  Google Scholar 

  4. T. Tsutsumi, H.H. Ishiik, et al., J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 18(6), 2640–2645 (2000)

    Google Scholar 

  5. J. Appenzeller, Y.-M. Lin, J. Knoch, et al., Phys. Rev. Lett. 93(19), 196805 (2004)

    Article  Google Scholar 

  6. T.N. Theis, P.M. Solomon, Science 327(5973), 1600–1601 (2010)

    Article  Google Scholar 

  7. N. Cui, R. Liang, J. Xu, Appl. Phys. Lett. 98(14), 142105 (2011)

    Article  Google Scholar 

  8. Q. Huang, R. Huang, C. Wu, et al., IEEE International Electron Devices Meeting Technical Digest (2014), pp. 335–338

    Google Scholar 

  9. K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, IEEE International Electron Device Meeting, December 8–11, 2002, San Francisco, 2002, p.289

    Google Scholar 

  10. K. Gopalakrishnan, P.B. Griffin, J.D. Plummer, IEEE Trans. Electron Devices 52(1), 69–76 (2005)

    Article  Google Scholar 

  11. K. Gopalakrishnan, R. Woo, C. Jungemann, et al., IEEE Trans. Electron Devices 52(1), 77–84 (2005)

    Article  Google Scholar 

  12. S. Datta, B. Das, Appl. Phys. Lett. 56(7), 665–667 (1990)

    Article  Google Scholar 

  13. Y. Ohdaira, M. Oogane, H. Naganuma, et al., Appl. Phys. Lett. 99(13), 132513 (2011)

    Article  Google Scholar 

  14. P. Wojcik, J. Adamowski, B.J. Spisak, et al., J. Appl. Physiol. 115(10), 104310 (2014)

    Article  Google Scholar 

  15. Y. Wang, Green Micronanoelectronics (Science Press, Bei**g, 2010)

    Google Scholar 

  16. S. Salahuddin, S. Datta, Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano 8(2), 405–410 (2008)

    Google Scholar 

  17. C.M. Krowne, S.W. Kirchoefer, W. Chang, et al., Examination of the possibility of negative capacitance using ferroelectric materials in solid state electronic devices. Nano Lett. 11(3), 988–992 (2011)

    Article  Google Scholar 

  18. C.W. Yeung, A.I. Khan, S. Salahuddin et al., Device design consideration for ultra-thin body non-hysteretic negative capacitance FETs. Energy Efficient Electronic Systems (E3S), 2013 Third Berkeley Symposium on IEEE, 1–2 (2013)

    Google Scholar 

  19. C.-M. Hu, 3D FinFET and other sub-22nm transistors, 2012 19th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), IEEE (2012)

    Google Scholar 

  20. J. Akerman, Toward a universal memory. Science 308(5721), 508–510 (2005)

    Article  Google Scholar 

  21. W.J. Gallagher, S.S.P. Parkin, IBM J. Res. Dev. 50(1), 5–23 (2006)

    Article  Google Scholar 

  22. D. Apalkov, B. Dieny, J.M. Slarughter, Proc. IEEE 104(10), 1796–1830 (2016)

    Article  Google Scholar 

  23. Dept. of Physics and Astronomy, University of Nebraska, http://Physics.unl.edu/tsymbal/ reference/spin_dependent_tunneling/magnetic_tunnel_junction.shtml

  24. wihipedia, Magnetoresistive random-access memory, http://en.wikipedia.org/wiki/ magnetoresistive_random-access_memroy

  25. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996) ELESVIER SCIENCE BV, newsroom@elsevier.com

    Article  Google Scholar 

  26. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54(13), 9353–9358 (1996) AMER PHYSICAL SOC, prb@aps.org

    Article  Google Scholar 

  27. D. Apalkov, B. Dieny, J.M. Slaughter, Magnetoresistive random access memory. Proc. IEEE 104(10), 1796–1830 (2016) IEEE, ieeepress@ieee.org

    Article  Google Scholar 

  28. S.R. Ovshinsky, Reversible electrical switching phenomena in disordered structures [J]. Phys. Rev. Lett. 21(20), 1450 (1968)

    Article  Google Scholar 

  29. S. Hudgens, B. Johnson, Overview of phase-change chalcogenide nonvolatile memory technology [J]. MRS Bull. 29(11), 829–832 (2004)

    Article  Google Scholar 

  30. H.-S. Philip Wong, S. Raoux, S.B. Kim, et al., Phase change memory [J]. Proc. IEEE 98(12), 2201–2227 (2010)

    Article  Google Scholar 

  31. R.E. Simpson, P. Fons, A.V. Kolobov, et al., Interfacial phase-change memory [J]. Nat. Nanotechnol. 6(8), 501–505 (2011)

    Article  Google Scholar 

  32. D. C. Kau, S. Tang, I. V. Karpov, et al., A stackable crosspoint phase change memory [C]. IEEE International Electron Devices Meeting, (2009), p. 1-4

    Google Scholar 

  33. T.Y. Liu, T.H. Yan, R. Scheuerlein, et al., A 130.7-mm (2) 2-layer 32-Gb ReRAM memory device in 24-nm technology. IEEE J. Solid State Circuits 49(1), 140–153 (2014)

    Article  Google Scholar 

  34. Y. Hayakawa, A Himeno, R Yasuhara, et al., Highly reliable TaOx ReRAM with centralized filament for 28-nm embedded application// 2015 Symposium on VLSI Circuits. IEEE, 2015

    Google Scholar 

  35. Y. Hou, U. Celano, L. Goux, et al., Sub-10nm low current resistive switching behavior in hafnium oxide stack. Appl. Phys. Lett. 108(12), 123106 (2016)

    Article  Google Scholar 

  36. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  37. D.B. Strukov, G.S. Snider, D.R. Stewart, et al., The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  38. R. Waser, R. Dittmann, G. Staikov, et al., Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)

    Article  Google Scholar 

  39. T. Tuma, A. Pantazi, M. Le Gallo, et al., Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693 (2016)

    Article  Google Scholar 

  40. Z. Wang, S. Joshi, S.E. Savel’ev, et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101 (2016)

    Article  Google Scholar 

  41. M. Li, Novel Device Design and Ultra-Shallow Junction Process Atomistic Simulation for VDSE[D] (School of Electronic Engineering and Computer Science, Peking University, Bei**g, 2003)

    Google Scholar 

  42. Y. Tian, R. Han **ao, C.F. Huang, M. Chan, X. Zhang, Y. Wang, Quasi-SOI MOSFET-A promising bulk device candidate for extremely scaled era[J]. IEEE Trans. Electron Devices 54(7), 1784–1788 (2007)

    Article  Google Scholar 

  43. Y. Tian, Research on Advanced CMOS Devices in Nano-Scaled Regime[D] (School of Electronic Engineering and Computer Science, Peking University, Bei**g, 2007)

    Google Scholar 

  44. H. **ao, Investigation on Novel-Structure MOSFETs for RF Applications[D] (School of Electronic Engineering and Computer Science, Peking University, Bei**g, 2008)

    Google Scholar 

  45. F. Tan, Research on Radiation Effects of Advanced Microelectronic Device[D] (School of Electronic Engineering and Computer Science, Peking University, Bei**g, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimao Cai .

Editor information

Editors and Affiliations

Copyright information

© 2024 Publishing House of Electronics Industry

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cai, Y., Xu, J., Liang, R., Huang, Q., Wang, Z. (2024). Non-traditional New Structure Devices. In: Wang, Y., Chi, MH., Lou, J.JC., Chen, CZ. (eds) Handbook of Integrated Circuit Industry. Springer, Singapore. https://doi.org/10.1007/978-981-99-2836-1_81

Download citation

Publish with us

Policies and ethics

Navigation