Emerging Pathophysiology and Treatment of Prostate Cancer: Future Perspective

  • Living reference work entry
  • First Online:
Handbook of Oncobiology: From Basic to Clinical Sciences
  • 30 Accesses

Abstract

There is wide variability in the response of individuals to standard doses of drug therapy. This is an important problem in clinical practice, where it can lead to therapeutic failures or adverse drug events. Polymorphisms in genes coding for metabolizing enzymes and drug transporters can affect drug efficacy and toxicity. Pharmacogenomics aims to identify individuals predisposed to high risk of toxicity and low response from standard doses of anticancer drugs. This chapter focuses on the clinical significance of polymorphisms in drug-metabolizing enzymes and drug transporters in influencing the efficacy and toxicity of anticancer therapy. The most important examples to demonstrate the influence of pharmacogenomics on anticancer therapy are thiopurine methyltransferase (TPMT), UGT (uridine diphosphate glucuronosyltransferase), and DPD (dihydropyrimidine dehydrogenase), respectively, for 6-mercaptopurine, irinotecan, and 5-fluorouracil therapy. However, in most other anticancer therapies no clear association has been found for polymorphisms in drug-metabolizing enzymes and drug transporters and pharmacokinetics or pharmacodynamics of anticancer drugs. Evaluation of different regimens and tumor types showed that polymorphisms can have different, sometimes even contradictory, pharmacokinetic and pharmacodynamic effects in different tumors in response to different drugs. The clinical application of pharmacogenomics in cancer treatment, therefore, requires more detailed information regarding the different polymorphisms in drug-metabolizing enzymes and drug transporters. A greater understanding of complexities in pharmacogenomics is needed before individualized therapy can be applied on a routine basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Baker DE (2003) Pharmacogenomics of azathioprine and 6-mercaptopurine in gastroenterologic therapy. Rev Gastroenterol Disord 3:150–157

    PubMed  Google Scholar 

  • Bertholee D, Maring JG, van Kuilenburg AB (2017) Genotypes affecting the pharmacokinetics of anticancer drugs. Clin Pharmacokinet 56:317–337. https://doi.org/10.1007/s40262-016-0450-z

  • Borvak J, Richardson J, Medesan C et al (1998) Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int Immunol 10(9):1289–1298

    Article  CAS  PubMed  Google Scholar 

  • Bosch TM, Deenen M, Pruntel R et al (2006) Screening for polymorphisms in the PXR gene in a Dutch population. Eur J Clin Pharmacol 62:395–399

    Article  CAS  PubMed  Google Scholar 

  • Breedveld F (2000) Therapeutic monoclonal antibodies. Lancet 355(9205):735–740. https://doi.org/10.1016/S0140-6736(00)01034-5

    Article  CAS  PubMed  Google Scholar 

  • Cascorbi I, Gerloff T, Johne A et al (2001) Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther 69:169–174

    Article  CAS  PubMed  Google Scholar 

  • Choi HG, Jeon JY, I’m YJ et al (2015) Pharmacokinetic properties of two erlotinib 150 mg formulations with a genetic effect evaluation in healthy Korean subjects. Clin Drug Investig 35(1):31–43. https://doi.org/10.1007/s40261-014-0248-4

    Article  CAS  PubMed  Google Scholar 

  • Cohen V, Panet-Raymond V, Sabbaghian N, Morin I, Batist G, Rozen R (2003) Methylenetetrahydrofolate reductase polymorphism in advanced colorectal cancer: a novel genomic predictor of clinical response to fluoropyrimidinebased chemotherapy. Clin Cancer Res 9(5):1611–1615

    CAS  PubMed  Google Scholar 

  • Dai D, Zeldin DC, Blaisdell JA et al (2001) Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 11(7):597–607

    Article  CAS  PubMed  Google Scholar 

  • de Jong FA, Marsh S, Mathijssen RH et al (2004) ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 10:5889–5894

    Article  PubMed  Google Scholar 

  • Deenen MJ, Cats A, Beijnen JH, Schellens JH (2011) Part 2: pharmacogenetic variability in drug transport and phase I anticancer drug metabolism. Oncologist 16(6):820–834. https://doi.org/10.1634/theoncologist.2010-0259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehal SS, Kupfer D (1997) CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res 57:3402–3406

    CAS  PubMed  Google Scholar 

  • Efferth T, Sauerbrey A, Steinbach D et al (2003) Analysis of single nucleotide polymorphism C3435T of the multidrug resistance gene MDR1 in acute lymphoblastic leukemia. Int J Oncol 23:509–517

    CAS  PubMed  Google Scholar 

  • Ekhart C, Doodeman VD, Rodenhuis S et al (2008a) Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genomics 18(6):515–523. https://doi.org/10.1097/FPC.0b013e3282fc9766

    Article  CAS  PubMed  Google Scholar 

  • Ekhart C, Rodenhuis S, Smits PHM et al (2008b) Relations between polymorphisms in drug-metabolising enzymes and toxicity of chemotherapy with cyclophosphamide, thiotepa and carboplatin. Pharmacogenet Genomics 18(11):1009–1015. https://doi.org/10.1097/FPC.0b013e328313aaa4

    Article  CAS  PubMed  Google Scholar 

  • Evans WE (2004) Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Ther Drug Monit 26:186–191

    Article  CAS  PubMed  Google Scholar 

  • Feugier P, Van Hoof A, Sebban C et al (2005) Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol 23(18):4117–4126. (pii: JCO.2005.09.131)

    Article  CAS  PubMed  Google Scholar 

  • Frosst P, Zhang ZX, Pai A, Rozen R (1996) The methylenetetrahydrofolate reductase (Mthfr) gene maps to distal mouse chromosome 4. Mamm Genome 7(11):864–865

    Article  CAS  PubMed  Google Scholar 

  • Goh BC, Lee SC, Wang LZ et al (2002) Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenoty** and genoty** strategies. J Clin Oncol 20:3683–3690

    Article  CAS  PubMed  Google Scholar 

  • Goreva OB, Grishanova AY, Mukhin OV et al (2003) Possible prediction of the efficiency of chemotherapy in patients with lymphoproliferative diseases based on MDR1 gene G2677T and C3435T polymorphisms. Bull Exp Biol Med 136:183–185

    Article  CAS  PubMed  Google Scholar 

  • Gouilleux-Gruart V, Chapel H, Chevret S et al (2013) DEFI Study Group. Efficiency of immunoglobulin G replacement therapy in common variable immunodeficiency: correlations with clinical phenotype and polymorphism of the neonatal Fc receptor. Clin Exp Immunol 171(2):186–194. https://doi.org/10.1111/cei.12002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heggie GD, Sommadossi J-P, Cross DS et al (1987) Clinical pharmacokinetics of 5-fluorouracil and its metabolism inplasma, urine and bile. Cancer Res 47:2203–2306

    CAS  PubMed  Google Scholar 

  • Hirose T, Fujita K, Nishimura K et al (2010) Pharmacokinetics of S-1 and CYP2A6 genotype in Japanese patients with advanced cancer. Oncol Rep 24(2):529–536

    Article  CAS  PubMed  Google Scholar 

  • Hoffmeyer S, Burk O, von Richter O et al (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 97:3473–3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houtsma D, Guchelaar HJ, Gelderblom H (2010) Pharmacogenetics in oncology: a promising field. Curr Pharm Des 16:155–163. https://doi.org/10.2174/138161210790112719

    Article  CAS  PubMed  Google Scholar 

  • Hu RT, Wang NY, Huang MJ, Huang CS, Chen DS, Yang SS (2014) Multiple variants in UGT1A1 gene are factors to develop indirect hyper-bilirubinemia. Hepatobiliary Surg Nutr 3:4. https://doi.org/10.3978/j.issn.2304-3881.2014.08.04

    Article  Google Scholar 

  • Iacopetta B, Grieu F, Joseph D et al (2001) Apolymorphism in the enhancer region of the thymidylate synthase gene influences the survival of colorectal cancer patients treated with 5-fluorouracil. Br J Cancer 85:827–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illmer T, Schuler US, Thiede C et al (2002) MDR1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients. Cancer Res 62:4955–4962

    CAS  PubMed  Google Scholar 

  • Imai Y, Nakane M, Kage K et al (2002) C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 1:611–616

    CAS  PubMed  Google Scholar 

  • Innocenti F, Grimsley C, Das S, Ramirez J, Cheng C, Kuttab-Boulos H et al (2002) Haplotype structure of the UDP-glucuronosyltransferase 1A1 promoter in different ethnic groups. Pharmacogenetics 12(9):725–733. https://doi.org/10.1097/00008571-200212000-00006

    Article  CAS  PubMed  Google Scholar 

  • ** Y, Desta Z, Stearns V et al (2005) CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 97:30–39

    Article  CAS  PubMed  Google Scholar 

  • Kadakol A, Ghosh SS, Sappal BS, Sharma G, Chowdhury JR, Chowdhury NR (2000) Genetic lesions of bilirubin uridine-diphosphoglucuronate glucuronosyltransferase (UGT1A1) causing Crigler- Najjar and Gilbert syndromes: correlation of genotype to phenotype. Hum Mutat 16(4):297–306. https://doi.org/10.1002/1098-1004(200010)16:4%3C297::aidhumu2%3E3.0.co;2-z

    Article  CAS  PubMed  Google Scholar 

  • Kishi S, Yang W, Boureau B et al (2004) Effects of prednisone and genetic polymorphisms on etoposide disposition in children with acute lymphoblastic leukemia. Blood 103:67–72

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Sato K, Niioka T, Miura H, Ito H, Miura M (2015) Relationship among gefitinib exposure, polymorphisms of its metabolizing enzymes and transporters, and side effects in Japanese patients with non–small-cell lung cancer. Clin Lung Cancer 16(4):274–281. https://doi.org/10.1016/j.cllc.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  • Koyano S, Kurose K, Saito Y et al (2004) Functional characterization of four naturally occurring variants of human pregnane X receptor (PXR): one variant causes dramatic loss of both DNA binding activity and the transactivation of the CYP3A4 promoter/enhancer region. Drug Metab Dispos 32:149–154

    Article  CAS  PubMed  Google Scholar 

  • Kra**ovic M, Costea I, Chiasson S (2002) Polymorphism of the thymidylate Annu. synthase gene and outcome of acute lymphoblastic leukemia. Lancet 359:1033–1034

    Article  CAS  PubMed  Google Scholar 

  • Kruijtzer CM, Beijnen JH, Rosing H et al (2002) Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 20:2943–2950

    Article  CAS  PubMed  Google Scholar 

  • Lamba JK, Lin YS, Schuetz EG et al (2002) Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 54:1271–1294

    Article  CAS  PubMed  Google Scholar 

  • Maring JG, van Kuilenburg AB, Haasjes J et al (2002) Reduced 5-FU clearance in a patient with low DPD activity to heterozygosity for a mutant allele of the DPYD gene. Br J Cancer 86:1028–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh S, Collie-Duguid ES, Li T et al (1999) Ethnic variation in the thymidylate synthase enhancer region polymorphism among Caucasian and Asian populations. Genomics 58:310–312

    Article  CAS  PubMed  Google Scholar 

  • Marsh S, McKay JA, Cassidy J et al (2001) Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer. Int J Clin Oncol 19:383–386

    CAS  Google Scholar 

  • Massacesi C, Terrazzino S, Marcucci F, Rocchi MB, Lippe P, Bisonni R et al (2006) Uridine diphosphate glucuronosyl transferase 1A1 promoter polymorphism predicts the risk of gastrointestinal toxicity and fatigue induced by irinotecan-based chemotherapy. Cancer 106(5):1007–1016. https://doi.org/10.1002/cncr.21722

    Article  CAS  PubMed  Google Scholar 

  • Meyer UA, Zanger UM (1997) Molecular mechanisms of genetic polymorphisms of drug metabolism. Ann Rev Pharmacol Toxicol 37(1):269–296. https://doi.org/10.1146/annurev.pharmtox.37.1.269

  • Mikulska JE, Pablo L, Canel J, Simister NE (2000) Cloning and analysis of the gene encoding the human neonatal Fc receptor. Eur J Immunogenet 27(4):231–240. (pii: eji225)

    Article  CAS  PubMed  Google Scholar 

  • Mizuarai S, Aozasa N, Kotani H (2004) Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer 109:238–246

    Article  CAS  PubMed  Google Scholar 

  • Musolino A, Naldi N, Bortesi B et al (2008) Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26(11):1789–1796

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Komagata S, Fujiki Y et al (2007) Genetic polymorphisms of CYP2B6 affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenet Genomics 17(6):431–445. https://doi.org/10.1097/FPC.0b013e328045c4fb

    Article  CAS  PubMed  Google Scholar 

  • Nauck M, Stein U, von Karger S et al (2000) Rapid detection of the C3435T polymorphism of multidrug resistance gene 1 using fluorogenic hybridization probes. Clin Chem 46:1995–1997

    Article  CAS  PubMed  Google Scholar 

  • Nishimura R, Nagao K, Miyayama H et al (1999) Thymidylate synthase levels as a therapeutic and prognostic predictor in breast cancer. Anticancer Res 19:5621–5626

    CAS  PubMed  Google Scholar 

  • Park SR, Hong YS, Lim HS et al (2013) Phase I clinical and pharmacokinetic/pharmacogenetic study of a triplet regimen of S-1/irinotecan/oxaliplatin in patients with metastatic colorectal or gastric cancer. Cancer Chemother Pharmacol 72(5):953–964. https://doi.org/10.1007/s00280-013-2272-0

    Article  CAS  PubMed  Google Scholar 

  • Passot C, Azzopardi N, Renault S et al (2013) Influence of FCGRT gene polymorphisms on pharmacokinetics of therapeutic antibodies. mAbs 5(4):614–619. https://doi.org/10.4161/mabs.24815

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirmohamed M, Park BK (2001) Genetic susceptibility to adverse drug reactions. Trend Pharmacol Sci 22(6):298–305. https://doi.org/10.1016/s0165-6147(00)01717-x

  • Pullarkat ST, Stoehlmacher J, Ghaderi V et al (2001) Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J 1:65–70

    Article  CAS  PubMed  Google Scholar 

  • Rutsum YM, Harstrick A, Cao S et al (1997) Thymidylate synthase inhibitors in cancer therapy: direct and indirect inhibitors. J Clin Oncol 15:389–400

    Article  Google Scholar 

  • Schwab M, Eichelbaum M, Fromm MF (2003) Genetic polymorphisms of the human MDR1 drug transporter. Annu Rev Pharmacol Toxicol 43:285–307. https://doi.org/10.1146/annurev.pharmtox.43.100901.140233

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792. https://doi.org/10.1056/NEJM200103153441101

    Article  CAS  PubMed  Google Scholar 

  • Sparreboom A, Marsh S, Mathijssen RH et al (2004) Pharmacogenetics of tipifarnib (R115777) transport and metabolism in cancer patients. Investig New Drugs 22:285–289

    Article  CAS  Google Scholar 

  • Tavadia SM, Mydlarski PR, Reis MD et al (2000) Screening for azathioprine toxicity:a pharmacoeconomic analysis based on a target case. J Am Acad Dermatol 42:628–632

    Article  CAS  PubMed  Google Scholar 

  • Uppugunduri CR, Rezgui MA, Diaz PH et al (2014) The association of cytochrome P450 genetic polymorphisms with sulfolane formation and the efficacy of a busulfan-based conditioning regimen in pediatric patients undergoing hematopoietic stem cell transplantation. Pharmacogenomics J 14(3):263–271. https://doi.org/10.1038/tpj.2013.38

    Article  CAS  PubMed  Google Scholar 

  • Van Cutsem E, Köhne C, Hitre E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360(14):1408–1417. https://doi.org/10.1056/NEJMoa0805019

    Article  PubMed  Google Scholar 

  • van Kuilenburg AB, Muller EW, Haasjes J et al (2001) Lethal outcome of a patient with a complete dihydropyrimidine dehydrogenase (DPD) deficiency after administration of 5-fluorouracil: frequency of the common IVS14+1G>A mutation causing DPD deficiency. Clin Cancer Res 7:1149–1153

    PubMed  Google Scholar 

  • van Schaik RH (2005) Cancer treatment and pharmacogenetics of cytochrome P450 enzymes. Investig New Drugs 23(6):513–522. https://doi.org/10.1007/s10637-005-4019-1

    Article  CAS  Google Scholar 

  • Veal GJ, Cole M, Chinnaswamy G et al (2016) Cyclophosphamide pharmacokinetics and pharmacogenetics in children with B-cell non-Hodgkin’s lymphoma. Eur J Cancer 55:56–64. https://doi.org/10.1016/j.ejca.2015.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Bian T, Liu D et al (2011) Association analysis of CYP2A6 genotypes and haplotypes with 5-fluorouracil formation from tegafur in human liver microsomes. Pharmacogenomics 12(4):481–492. https://doi.org/10.2217/pgs.10.202

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C (1980) Degradation of pyrimidines and pyrimidine analogs – pathways and mutual influences. Pharmacol Ther 8:629–652

    Article  CAS  PubMed  Google Scholar 

  • Weinshilboum RM, Sladek S (1980) Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 32:651–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler HE, Maitland ML, Dolan ME, Cox NJ, Ratain MJ (2013) Cancer pharmacogenomics: strategies and challenges. Nat Rev Genet 14(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Wold ED, Smider V, Felding BH (2016) Antibody therapeutics in oncology. Immunother Open Acc 2(108). https://doi.org/10.4172/imt.1000108

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rawat, R., Dahiya, M., Yadav, M., Kumar, A., Dhakla, P. (2023). Emerging Pathophysiology and Treatment of Prostate Cancer: Future Perspective. In: Sobti, R.C., Ganguly, N.K., Kumar, R. (eds) Handbook of Oncobiology: From Basic to Clinical Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-2196-6_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2196-6_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2196-6

  • Online ISBN: 978-981-99-2196-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation