Fabrication Routes of Graphene

  • Chapter
  • First Online:
Graphene

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 467 Accesses

Abstract

This chapter describes various state-of-the-art fabrication routes for high-quality graphene included: chemical vapour deposition (CVD), mechanical exfoliation, chemical exfoliation, electrochemical exfoliation, arc discharge, epitaxial growth, and pyrolysis. CVD is a widely used technique for growing high-quality graphene films on metal catalyst substrates, and copper foil has shown promising results. Mechanical exfoliation involves peeling graphite flakes from highly oriented pyrolytic carbon (HOPG) platelets using Scotch tape, resulting in single-layer graphene. Chemical exfoliation has two methods: solution-assisted and low-temperature chemical exfoliation. Electrochemical exfoliation involves the intercalation and exfoliation of graphite into graphene nanosheets through electrolyte solutions. Arc discharge is a plasma deposition technique for synthesizing high-quality graphene sheets using alternating current arc-discharge processes. Epitaxial growth involves growing single-layer or multilayer graphene on a SiC substrate using high-temperature sublimation growth. Pyrolysis is a 6-step process of poly(methyl methacrylate) composite that results in carbon derivatives that dissolve in the Ni catalyst surface, resulting in the epitaxial growth of graphene. Each method has its unique features, advantages, and disadvantages, making them suitable for different applications. For example, mechanical exfoliation remains one of the most reliable ways of producing high-quality graphene and has led to the discovery of graphene's extraordinary physical properties. Chemical exfoliation can produce graphene on a large scale, and electrochemical exfoliation is effective in creating biocompatible and fluorescent carbon nanomaterials for biological labelling and imaging. CVD as well as epitaxial growth can produce high-quality graphene films, and pyrolysis produces graphene with a high degree of graphitization. The choice of the appropriate technique is crucial for specific applications. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alanyalioǧlu, M., Segura, J.J., Oró-Sol, J., Casañ-Pastor, N.: The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50(1), 142–152 (2012). https://doi.org/10.1016/j.carbon.2011.07.064

    Article  Google Scholar 

  2. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y.I., Kim, Y.J., Kim, K.S., Özyilmaz, B., Ahn, J.H., Hong, B.H., Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010). https://doi.org/10.1038/nnano.2010.132

    Article  ADS  Google Scholar 

  3. Berlouis, L.E.A., Schiffrin, D.J.: The electrochemical formation of graphitebisulphate intercalation compounds. J. Appl. Electrochem. 13(2), 147–155 (1983). https://doi.org/10.1007/BF00612475

    Article  Google Scholar 

  4. Blake, P., Hill, E.W., Castro Neto, A.H., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J., Geim, A.K.: Making graphene visible. Appl. Phys. Lett. 91(6), (2007). https://doi.org/10.1063/1.2768624

  5. Casallas Caicedo, F.M., Vera López, E., Agarwal, A., Drozd, V., Durygin, A., Franco Hernandez, A., Wang, C.: Synthesis of graphene oxide from graphite by ball milling. Diam. Relat. Mater. 109(September), 108064 (2020). https://doi.org/10.1016/j.diamond.2020.108064

    Article  ADS  Google Scholar 

  6. Chen, C., Zhai, W., Lu, D., Zhang, H., Zheng, W.: A facile method to prepare stable noncovalent functionalized graphene solution by using thionine. Mater. Res. Bull. 46(4), 583–587 (2011). https://doi.org/10.1016/j.materresbull.2010.12.024

    Article  Google Scholar 

  7. Chen, J., Cui, M., Wu, G., Wang, T., Mbengue, J.M., Li, Y., Li, M.: Fast growth of large single-crystalline graphene assisted by sequential double oxygen passivation. Carbon 116, 133–138 (2017). https://doi.org/10.1016/j.carbon.2017.01.108

    Article  Google Scholar 

  8. Chen, J.H., Jang, C., **ao, S., Ishigami, M., Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3(4), 206–209 (2008). https://doi.org/10.1038/nnano.2008.58

    Article  Google Scholar 

  9. Chen, L., Tang, Y., Wang, K., Liu, C., Luo, S.: Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem. Commun. 13(2), 133–137 (2011). https://doi.org/10.1016/j.elecom.2010.11.033

    Article  Google Scholar 

  10. Chen, Z., Ren, W., Liu, B., Gao, L., Pei, S., Wu, Z.S., Zhao, J., Cheng, H.M.: Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane. Carbon 48(12), 3543–3550 (2010). https://doi.org/10.1016/j.carbon.2010.05.052

    Article  Google Scholar 

  11. Choy, K.L.: Chemical vapour deposition of coatings. Prog. Mater Sci. 48(2), 57–170 (2003). https://doi.org/10.1016/S0079-6425(01)00009-3

    Article  Google Scholar 

  12. De Heer, W.A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B., Hankinson, J., Conrad, E.: Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. U.S.A. 108(41), 16900–16905 (2011). https://doi.org/10.1073/pnas.1105113108

    Article  ADS  Google Scholar 

  13. Di, C.A., Wei, D., Yu, G., Liu, Y., Guo, Y., Zhu, D.: Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater. 20(17), 3289–3293 (2008). https://doi.org/10.1002/adma.200800150

    Article  Google Scholar 

  14. Dimovski, S., Nikitin, A., Ye, H., Gogotsi, Y.: Synthesis of graphite by chlorination of iron carbide at moderate temperatures. J. Mater. Chem. 14(2), 238–243 (2004). https://doi.org/10.1039/b311938f

    Article  Google Scholar 

  15. Economopoulos, S.P., Rotas, G., Miyata, Y., Shinohara, H., Tagmatarchis, N.: Exfoliation and chemical modification using microwave irradiation affording highly functionalized graphene. ACS Nano 4(12), 7499–7507 (2010). https://doi.org/10.1021/nn101735e

    Article  Google Scholar 

  16. Feng, L., Chen, Y., Chen, L.: Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped graphene and its application as cathode catalyst in microbial fuel cells. ACS Nano 5(12), 9611–9618 (2011). https://doi.org/10.1021/nn202906f

    Article  Google Scholar 

  17. Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Schweiz. Z. Für Hydrol. 31(2), 632–645 (1969). https://doi.org/10.1007/BF02543692

  18. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 1–4 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

    Article  Google Scholar 

  19. Film, C., Ago, H., Ito, Y., Mizuta, N., Yoshida, K., Hu, B., Orofeo, C.M.: Epitaxial chemical vapor deposition growth of single-layer graphene over. Acsnano 4(12), 7407–7414 (2010)

    Google Scholar 

  20. Guerrero-Fajardo, C.A., Giraldo, L., Moreno-Piraján, J.C.: Preparation and characterization of graphene oxide for Pb(II) and Zn(II) ions adsorption from aqueous solution: experimental, thermodynamic and kinetic study. Nanomaterials 10(6), (2020). https://doi.org/10.3390/nano10061022

  21. Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700), 1362–1364 (2004). https://doi.org/10.1126/science.1104962

    Article  ADS  Google Scholar 

  22. Hathcock, K.W., Brumfield, J.C., Goss, C.A., Irene, E.A., Murray, R.W.: Incipient electrochemical oxidation of highly oriented pyrolytic graphite: correlation between surface blistering and electrolyte anion intercalation. Anal. Chem. 67(13), 2201–2206 (1995). https://doi.org/10.1021/ac00109a045

    Article  Google Scholar 

  23. Hong, N., Yang, W., Bao, C., Jiang, S., Song, L., Hu, Y.: Facile synthesis of graphene by pyrolysis of poly(methyl methacrylate) on nickel particles in the confined microzones. Mater. Res. Bull. 47(12), 4082–4088 (2012). https://doi.org/10.1016/j.materresbull.2012.08.049

    Article  Google Scholar 

  24. Hu, B., Ago, H., Ito, Y., Kawahara, K., Tsuji, M., Magome, E., Sumitani, K., Mizuta, N., Ikeda, K.I., Mizuno, S.: Epitaxial growth of large-area single-layer graphene over Cu(1 1 1)/sapphire by atmospheric pressure CVD. Carbon 50(1), 57–65 (2012). https://doi.org/10.1016/j.carbon.2011.08.002

    Article  Google Scholar 

  25. Huang, H., Chen, W., Chen, S., Thye, A., Wee, S.: Bottom-up growth of epitaxial. ACS Nano 2(12), 2513–2518 (2008)

    Article  Google Scholar 

  26. Huang, L., Cui, X., Dukovic, G., O’Brien, S.P.: Self-organizing high-density single-walled carbon nanotube arrays from surfactant suspensions. Nanotechnology 15(11), 1450–1454 (2004). https://doi.org/10.1088/0957-4484/15/11/012

    Article  ADS  Google Scholar 

  27. Huang, P.Y., Ruiz-Vargas, C.S., Van Der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu, Y., Park, J., McEuen, P.L., Muller, D.A.: Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469(7330), 389–392 (2011). https://doi.org/10.1038/nature09718

    Article  ADS  Google Scholar 

  28. Hummers W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 208(1937), 1937 (1957). https://pubs.acs.org/sharingguidelines

  29. Hwang, J., Kim, M., Campbell, D., Alsalman, H.A., Kwak, J.Y., Shivaraman, S., Woll, A.R., Singh, A.K., Hennig, R.G., Gorantla, S., Rümmeli, M.H., Spencer, M.G.: Van der waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 7(1), 385–395 (2013). https://doi.org/10.1021/nn305486x

    Article  Google Scholar 

  30. Jayasena, B., Subbiah, S.: A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res. Lett. 6(1), 1–7 (2011). https://doi.org/10.1186/1556-276X-6-95

    Article  Google Scholar 

  31. Jeong, H.K., Yun, P.L., Lahaye, R.J.W.E., Park, M.H., Kay, H.A., Ick, J.K., Yang, C.W., Chong, Y.P., Ruoff, R.S., Young, H.L.: Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 130(4), 1362–1366 (2008). https://doi.org/10.1021/ja076473o

    Article  Google Scholar 

  32. Karmakar, S., Nawale, A.B., Lalla, N.P., Sathe, V.G., Kolekar, S.K., Mathe, V.L., Das, A.K., Bhoraskar, S.V.: Gas phase condensation of few-layer graphene with rotational stacking faults in an electric-arc. Carbon 55, 209–220 (2013). https://doi.org/10.1016/j.carbon.2012.12.029

    Article  Google Scholar 

  33. Kim, J., Ishihara, M., Koga, Y., Tsugawa, K., Hasegawa, M., Iijima, S.: Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl. Phys. Lett. 98(9), 2011–2014 (2011). https://doi.org/10.1063/1.3561747

    Article  Google Scholar 

  34. Kim, K., Artyukhov, V.I., Regan, W., Liu, Y., Crommie, M.F., Yakobson, B.I., Zettl, A.: Rip** graphene: preferred directions. Nano Lett. 12(1), 293–297 (2012). https://doi.org/10.1021/nl203547z

    Article  ADS  Google Scholar 

  35. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009). https://doi.org/10.1038/nature07719

    Article  ADS  Google Scholar 

  36. Kim, N.S., Lee, Y.T., Park, J., Han, J.B., Choi, Y.S., Choi, S.Y., Choo, J., Lee, G.H.: Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phthalocyanines. J. Phys. Chem. B 107(35), 9249–9255 (2003). https://doi.org/10.1021/jp034895o

    Article  Google Scholar 

  37. Lambert, T.N., Luhrs, C.C., Chavez, C.A., Wakeland, S., Brumbach, M.T., Alam, T.M.: Graphite oxide as a precursor for the synthesis of disordered graphenes using the aerosol-through-plasma method. Carbon 48(14), 4081–4089 (2010). https://doi.org/10.1016/j.carbon.2010.07.015

    Article  Google Scholar 

  38. Li, D., Kaner, R.B.: Materials science: graphene-based materials. Science 320(5880), 1170–1171 (2008). https://doi.org/10.1126/science.1158180

    Article  Google Scholar 

  39. Li, N., Zhen, Z., Zhang, R., Xu, Z., Zheng, Z., He, L.: Nucleation and growth dynamics of graphene grown by radio frequency plasma-enhanced chemical vapor deposition. Sci. Rep. 11(1), 1–10 (2021). https://doi.org/10.1038/s41598-021-85537-3

  40. Li, N., Wang, Z., Zhao, K., Shi, Z., Gu, Z., Xu, S.: Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1), 255–259 (2010). https://doi.org/10.1016/j.carbon.2009.09.013

    Article  Google Scholar 

  41. Li, X., Cai, W., An, J., Kim, S., Nah, J., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2016)

    Google Scholar 

  42. Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Zhiming, W., McGovern, I.T., Duesberg, G.S., Coleman, J.N.: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131(10), 3611–3620 (2009). https://doi.org/10.1021/ja807449u

    Article  Google Scholar 

  43. Low, C.T.J., Walsh, F.C., Chakrabarti, M.H., Hashim, M.A., Hussain, M.A.: Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54, 1–21 (2013). https://doi.org/10.1016/j.carbon.2012.11.030

    Article  Google Scholar 

  44. Lu, J., Yang, J., Wang, J., Lim, A., Wang, S., Loh, K.P.: One-pot synthesis of fluorescent carbon graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8), 2367–2375 (2009)

    Google Scholar 

  45. Luo, B., Liu, H., Jiang, L., Jiang, L., Geng, D., Wu, B., Hu, W., Liu, Y., Yu, G.: Synthesis and morphology transformation of single-crystal graphene domains based on activated carbon dioxide by chemical vapor deposition. J. Mater. Chem. C 1(17), 2990–2995 (2013). https://doi.org/10.1039/c3tc30124a

    Article  Google Scholar 

  46. Lv, H., Pan, Q., Song, Y., Liu, X.X., Liu, T.: A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors. Nano-Micro Lett. 12(1), (2020). https://doi.org/10.1007/s40820-020-00451-z. (Springer Singapore)

  47. Lv, W., Tang, D.M., He, Y.B., You, C.H., Shi, Z.Q., Chen, X.C., Chen, C.M., Hou, P.X., Liu, C., Yang, Q.H.: Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3(11), 3730–3736 (2009). https://doi.org/10.1021/nn900933u

    Article  Google Scholar 

  48. Mattevi, C., Kim, H., Chhowalla, M.: A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21(10), 3324–3334 (2011). https://doi.org/10.1039/c0jm02126a

    Article  Google Scholar 

  49. Merlen, A., Buijnsters, J.G., Pardanaud, C.: A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: from graphene to amorphous carbons. Coatings 7(10), (2017). https://doi.org/10.3390/coatings7100153

  50. Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007). https://doi.org/10.1038/nature05545

    Article  ADS  Google Scholar 

  51. Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F., Zettl, A.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8(11), 3582–3586 (2008). https://doi.org/10.1021/nl801386m

    Article  ADS  Google Scholar 

  52. Miller, J.R., Outlaw, R.A., Holloway, B.C.: Graphene double-layer capacitor with ac line-filtering performance. Science 329(5999), 1637–1639 (2010). https://doi.org/10.1126/science.1194372

    Article  ADS  Google Scholar 

  53. Ni, Z.H., Chen, W., Fan, X.F., Kuo, J.L., Yu, T., Wee, A.T.S., Shen, Z.X.: Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B-Condens. Matter Mater. Phys. 77(11), 1–6 (2008). https://doi.org/10.1103/PhysRevB.77.115416

    Article  Google Scholar 

  54. Ni, Z., Wang, Y., Yu, T., Shen, Z.: Raman spectroscopy and imaging of graphene. Nano Res. 1(4), 273–291 (2008). https://doi.org/10.1007/s12274-008-8036-1

    Article  Google Scholar 

  55. Ortiz Balbuena, J., Tutor De Ureta, P., Rivera Ruiz, E., Mellor Pita, S.: Enfermedad de Vogt-Koyanagi-Harada. Med. Clin. 146(2), 93–94 (2016). https://doi.org/10.1016/j.medcli.2015.04.005

    Article  Google Scholar 

  56. Othman, M., Ritikos, R., Muhammad Hafiz, S., Khanis, N.H., Abdul Rashid, N.M., Abdul Rahman, S.: Low-temperature plasma-enhanced chemical vapour deposition of transfer-free graphene thin films. Mater. Lett. 158, 436–438 (2015). https://doi.org/10.1016/j.matlet.2015.06.039

    Article  Google Scholar 

  57. Panchakarla, L.S., Govindaraj, A., Rao, C.N.R.: Boron- and nitrogen-doped carbon nanotubes and graphene. Inorg. Chim. Acta 363(15), 4163–4174 (2010). https://doi.org/10.1016/j.ica.2010.07.057

    Article  Google Scholar 

  58. Qian, W., Liu, T., Wang, Z., Yu, H., Li, Z., Wei, F., Luo, G.: Effect of adding nickel to iron-alumina catalysts on the morphology of as-grown carbon nanotubes. Carbon 41(13), 2487–2493 (2003). https://doi.org/10.1016/S0008-6223(03)00324-5

    Article  Google Scholar 

  59. Qin, B., Zhang, T., Chen, H., Ma, Y.: The growth mechanism of few-layer graphene in the arc discharge process. Carbon 102, 494–498 (2016). https://doi.org/10.1016/j.carbon.2016.02.074

    Article  Google Scholar 

  60. Rasool, H.I., Song, E.B., Mecklenburg, M., Regan, B.C., Wang, K.L., Weiller, B.H., Gimzewski, J.K.: Atomic-scale characterization of graphene grown on copper (100) single crystals. J. Am. Chem. Soc. 133(32), 12536–12543 (2011). https://doi.org/10.1021/ja200245p

    Article  Google Scholar 

  61. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J.: Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, pp. 1–6 (2008)

    Google Scholar 

  62. Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48(8), 2127–2150 (2010). https://doi.org/10.1016/j.carbon.2010.01.058

    Article  Google Scholar 

  63. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.B.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034

    Article  Google Scholar 

  64. Su, Y., Zhang, Y.: Carbon nanomaterials synthesized by arc discharge hot plasma. Carbon 83(November), 90–99 (2015). https://doi.org/10.1016/j.carbon.2014.11.023

    Article  Google Scholar 

  65. Subrahmanyam, K.S., Panchakarla, L.S., Govindaraj, A., Rao, C.N.R.: Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009). https://doi.org/10.1021/jp900791y

    Article  Google Scholar 

  66. Tan, H., Wang, D., Guo, Y.: A strategy to synthesize multilayer graphene in arc-discharge plasma in a semi-opened environment. Materials 12(14), (2019). https://doi.org/10.3390/ma12142279

  67. Tang, T., Chen, X., Meng, X., Chen, H., Ding, Y.: Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angew. Chem.-Int. Ed. 44(10), 1517–1520 (2005). https://doi.org/10.1002/anie.200461506

    Article  Google Scholar 

  68. Teng, C., **e, D., Wang, J., Yang, Z., Ren, G., Zhu, Y.: Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 27(20), (2017). https://doi.org/10.1002/adfm.201700240

  69. Tontegode, A.Y.: Carbon on transition metal surfaces. Prog. Surf. Sci. 38(3–4), 201–429 (1991). https://doi.org/10.1016/0079-6816(91)90002-L

    Article  ADS  Google Scholar 

  70. Tu, Z., Liu, Z., Li, Y., Yang, F., Zhang, L., Zhao, Z., Xu, C., Wu, S., Liu, H., Yang, H., Richard, P.: Controllable growth of 1–7 layers of graphene by chemical vapour deposition. Carbon 73, 252–258 (2014). https://doi.org/10.1016/j.carbon.2014.02.061

    Article  Google Scholar 

  71. Tung, V.C., Allen, M.J., Yang, Y., Kaner, R.B.: High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4(1), 25–29 (2009). https://doi.org/10.1038/nnano.2008.329

    Article  ADS  Google Scholar 

  72. Viera Skakalova, A.B.K.: Graphene Properties, Preparation, Characterisation and Devices (2014)

    Google Scholar 

  73. Wang, G., Wang, B., Park, J., Wang, Y., Sun, B., Yao, J.: Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 47(14), 3242–3246 (2009). https://doi.org/10.1016/j.carbon.2009.07.040

    Article  Google Scholar 

  74. Wang, J.J., Zhu, M.Y., Outlaw, R.A., Zhao, X., Manos, D.M., Holloway, B.C., Mammana, V.P.: Free-standing subnanometer qraphite sheets. Appl. Phys. Lett. 85(7), 1265–1267 (2004). https://doi.org/10.1063/1.1782253

    Article  ADS  Google Scholar 

  75. Wang, J., Manga, K.K., Bao, Q., Loh, K.P.: High-yield synthesis of few-layer graphene flakes through electrolyte. J. Am. Chem. Soc 133, 8888–8891 (2011)

    Article  Google Scholar 

  76. Wang, Z., Li, N., Shi, Z., Gu, Z.: Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air. Nanotechnology 21(17), (2010). https://doi.org/10.1088/0957-4484/21/17/175602

  77. Wintterlin, J., Bocquet, M.L.: Graphene on metal surfaces. Surf. Sci. 603(10–12), 1841–1852 (2009). https://doi.org/10.1016/j.susc.2008.08.037

    Article  ADS  Google Scholar 

  78. Wu, T., Ding, G., Shen, H., Wang, H., Sun, L., Jiang, D., **e, X., Jiang, M.: Triggering the continuous growth of graphene toward millimeter-sized grains. Adv. Func. Mater. 23(2), 198–203 (2013). https://doi.org/10.1002/adfm.201201577

    Article  Google Scholar 

  79. Wu, X., Liu, Y., Yang, H., Shi, Z.: Large-scale synthesis of high-quality graphene sheets by an improved alternating current arc-discharge method. RSC Adv. 6(95), 93119–93124 (2016). https://doi.org/10.1039/c6ra22273k

    Article  ADS  Google Scholar 

  80. Wu, Y., Wang, B., Ma, Y., Huang, Y., Li, N., Zhang, F., Chen, Y.: Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Res. 3(9), 661–669 (2010). https://doi.org/10.1007/s12274-010-0027-3

    Article  Google Scholar 

  81. Xu, X., Zhang, Z., Qiu, L., Zhuang, J., Zhang, L., Wang, H., Liao, C., Song, H., Qiao, R., Gao, P., Hu, Z., Liao, L., Liao, Z., Yu, D., Wang, E., Ding, F., Peng, H., Liu, K.: Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 11(11), 930–935 (2016). https://doi.org/10.1038/nnano.2016.132

    Article  ADS  Google Scholar 

  82. Xu, Z., Li, H., Li, W., Cao, G., Zhang, Q., Li, K., Fu, Q., Wang, J.: Large-scale production of graphene by microwave synthesis and rapid cooling. Chem. Commun. 47(4), 1166–1168 (2011). https://doi.org/10.1039/c0cc03520c

    Article  Google Scholar 

  83. Yazdi, G.R., Vasiliauskas, R., Iakimov, T., Zakharov, A., Syväjärvi, M., Yakimova, R.: Growth of large area monolayer graphene on 3C-SiC and a comparison with other SiC polytypes. Carbon 57, 477–484 (2013). https://doi.org/10.1016/j.carbon.2013.02.022

    Article  Google Scholar 

  84. Yousef, S., Khattab, A., Osman, T.A., Zaki, M.: Effects of increasing electrodes on CNTs yield synthesized by using arc-discharge technique. J. Nanomater. 2013, (2013). https://doi.org/10.1155/2013/392126

  85. Yu, Q., Jauregui, L.A., Wu, W., Colby, R., Tian, J., Su, Z., Cao, H., Liu, Z., Pandey, D., Wei, D., Chung, T.F., Peng, P., Guisinger, N.P., Stach, E.A., Bao, J., Pei, S.S., Chen, Y.P.: Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10(6), 443–449 (2011). https://doi.org/10.1038/nmat3010

    Article  ADS  Google Scholar 

  86. Yuan, C., Hsin, Y., Jong, L.: Growth of large‑sized graphene thin‑films by liquid precursor‑based chemical vapor deposition under atmospheric pressure (2011)

    Google Scholar 

  87. Zhang, W., Cui, J., Tao, C., Wu, Y., Li, Z., Ma, L., Wen, Y., Li, G.: A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. Angew. Chem. 121(32), 5978–5982 (2009). https://doi.org/10.1002/ange.200902365

    Article  ADS  Google Scholar 

  88. Zhu, M., Wang, J., Holloway, B.C., Outlaw, R.A., Zhao, X., Hou, K., Shutthanandan, V., Manos, D.M.: A mechanism for carbon nanosheet formation. Carbon 45(11), 2229–2234 (2007). https://doi.org/10.1016/j.carbon.2007.06.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goh Boon Tong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yip, T.M., Tong, G.B. (2023). Fabrication Routes of Graphene. In: Subramaniam, R.T., Kasi, R., Bashir, S., Kumar, S.S.A. (eds) Graphene. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-1206-3_4

Download citation

Publish with us

Policies and ethics

Navigation