Objectives and Constraints for Optimal Allocation of Distributed Energy Sources—A Review

  • Conference paper
  • First Online:
Intelligent Solutions for Smart Grids and Smart Cities (IPECS 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1022))

  • 280 Accesses

Abstract

In terms of its potential to utilise alternative energy sources, distributed generation offers a bright scope for the power generation in power systems. The contribution of distributed generators to the power grid ranges from increased dependability and efficiency to increased security and power quality. These advantages can only be realised if distributed resources are allocated optimally, taking into account the objective function, limitations, and an appropriate optimization technique. The current work used a complete assessment of the effective allocation of distributed generators for various objectives, limitations, and techniques was employed in the present study. The present study focuses on how approaches and methods for optimal distributed generation allocation contribute to enhance the efficacy and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 316.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 316.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pepermans G, Driesen J, Haeseldonckx D, Belmans R, D’Haeseleer W (2005) Distributed generation: definition, benefits and issues. Energy Policy 33:787–798

    Article  Google Scholar 

  2. El-Khattam W, Salama MMA (2004) Distributed generation technologies, definitions and benefits. Electr Power Syst Res 71:119–128

    Article  Google Scholar 

  3. Chiradeja P, Ramakumar R (2004) An approach to quantify the technical benefits of distributed generation. IEEE Trans Energy Convers 19:764–773

    Article  Google Scholar 

  4. Barker PP, De Mello RW (2000) Determining the impact of distributed generation on power systems. I. Radial distribution systems. In: Power engineering society summer meeting, vol 3. IEEE, pp 1645–1656

    Google Scholar 

  5. Jenkins N (2000) Institution of electrical E. embedded generation. Institution of Electrical Engineers, London

    Google Scholar 

  6. Girgis A, Brahma S (2001) Effect of distributed generation on protective device coordination in distribution system. In: 2001 LESCOPE '01 2001 large engineering systems conference on power engineering, pp 115–119

    Google Scholar 

  7. Edwards FV, Dudgeon GJW, McDonald JR, Leithead WE (2000) Dynamics of distribution networks with distributed generation. In: Power engineering society summer meeting, vol 2. IEEE, pp 1032–1037

    Google Scholar 

  8. Willis HL, Scott WG (2000) Distributed power generation: planning and evaluation

    Google Scholar 

  9. Joos G, Ooi BT, McGillis D, Galiana FD, Marceau R (2000) The potential of distributed generation to provide ancillary services. In: Power engineering society summer meeting, vol 3. IEEE, pp 1762–1767

    Google Scholar 

  10. Masters CL (2002) Voltage rise: the big issue when connecting embedded generation to long 11 kV overhead lines. Power Eng J 16:5–12

    Article  Google Scholar 

  11. Walling RA, Saint R, Dugan RC, Burke J, Kojovic LA (2008) Summary of distributed resources impact on power delivery systems. IEEE Trans Power Deliv 23:1636–1644

    Article  Google Scholar 

  12. Ault GW, McDonald JR (2000) Planning for distributed generation within distribution networks in restructured electricity markets. Power Eng Rev IEEE 20:52–54

    Article  Google Scholar 

  13. Dugan RC, McDermott TE, Ball GJ (2001) planning for distributed generation. Ind Appl Mag IEEE 7:80–88

    Article  Google Scholar 

  14. Zobaa A, Cecati C (2006) A comprehensive review on distributed power generation. In: SPEEDAM 2006 International symposium on power electronics, electrical drives, automation and motion. IEEE, pp 514–518

    Google Scholar 

  15. Viral R, Khatod D (2012) Optimal planning of distributed generation systems in distribution system: a review. Renew Sustain Energy Rev 16:5146–5165

    Article  Google Scholar 

  16. Hedayati H, Nabaviniaki SA, Akbarimajd A (2008) A method for placement of dg units in distribution networks. IEEE Trans Power Deliv 23:1620–1628

    Article  Google Scholar 

  17. Gözel T, Hocaoglu MH (2009) An analytical method for the sizing and siting of distributed generators in radial systems. Electr Power Syst Res 79:912–918

    Article  Google Scholar 

  18. Rau NS, Yih-Heui W (1994) Optimum location of resources in distributed planning. IEEE Trans Power Syst 9:2014–2020

    Article  Google Scholar 

  19. Hien NC, Mithulananthan N, Bansal RC (2013) Location and sizing of distributed generation units for loadabilty enhancement in primary feeder. IEEE Syst J 7:797–806

    Article  Google Scholar 

  20. Kim JO, Park SK, Park KW, Singh C (1998) Dispersed generation planning using improved hereford ranch algorithm. In: IEEE world congress on computational intelligence, The 1998 IEEE International conference on evolutionary computation proceedings, pp 678–683

    Google Scholar 

  21. Duong Quoc H, Mithulananthan N, Bansal RC (2010) Analytical expressions for dg allocation in primary distribution networks. IEEE Trans Energy Convers 25:814–820

    Article  Google Scholar 

  22. Lalitha MP, Reddy V, Usha V, Reddy NS (2010) Application of fuzzy and PSO for dg placement for minimum loss in radial distribution system. ARPN J Eng Appl Sci 5:32–37

    Google Scholar 

  23. Acharya N, Mahat P, Mithulananthan N (2006) An analytical approach for dg allocation in primary distribution network. Int J Electr Power Energy Syst 28:669–678

    Article  Google Scholar 

  24. El-Khattam W, Hegazy YG, Salama MMA (2006) Investigating distributed generation systems performance using monte carlo simulation. IEEE Trans Power Syst 21:524–532

    Article  Google Scholar 

  25. Khatod DK, Pant V, Sharma J (2013) Evolutionary programming based optimal placement of renewable distributed generators. IEEE Trans Power Syst 28:683–695

    Article  Google Scholar 

  26. Abu-Mouti FS, El-Hawary ME (2011) Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm. IEEE Trans Power Deliv 26:2090–2101

    Article  Google Scholar 

  27. Prenc R, Skrlec D, Komen V (2013) Optimal PV system placement in a distribution network on the basis of daily power consumption and production fluctuation. In: EUROCON. IEEE, pp 777–783

    Google Scholar 

  28. Al-Sabounchi A, Gow J, Al-Akaidi M, Al-Thani H (2011) Optimal sizing and location of a PV system on three-phase unbalanced radial distribution feeder avoiding reverse power flow. In: Electrical power and energy conference (EPEC). IEEE, pp 74–79

    Google Scholar 

  29. Atwa Y, El-Saadany E (2011) Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems. IET Renew Power Gener 5:79–88

    Article  Google Scholar 

  30. Hung DQ, Mithulananthan N, Lee KY (2014) Optimal placement of dispatchable and non dispatchable renewable dg units in distribution networks for minimizing energy loss. Int J Electr Power Energy Syst 55:179–186

    Article  Google Scholar 

  31. Nara K, Hayashi Y, Ikeda K, Ashizawa T (2001) Application of tabu search to optimal placement of distributed generators. In: IEEE Power engineering society winter meeting, vol 2, pp 918–923

    Google Scholar 

  32. Arya LD, Koshti A, Choube SC (2012) Distributed generation planning using differential evolution accounting voltage stability consideration. Int J Electr Power Energy Syst 42:196–207

    Article  Google Scholar 

  33. Kang Q, Zhou M, An J, Wu Q (2013) Swarm intelligence approaches to optimal power flow problem with distributed generator failures in power networks. Autom Sci Eng IEEE Trans 10:343–353

    Article  Google Scholar 

  34. Muttaqi KM, Le AD, Negnevitsky M, Ledwich G (2014) An algebraic approach for determination of dg parameters to support voltage profiles in radial distribution networks. IEEE Trans Smart Grid 5:1351–1360

    Article  Google Scholar 

  35. Juanuwattanakul P, Masoum M (2012) Increasing distributed generation penetration in multiphase distribution networks considering grid losses, maximum loading factor and bus voltage limits. Gener Transm Distrib IET 6:1262–1271

    Article  Google Scholar 

  36. Al Abri R, El-Saadany EF, Atwa YM (2013) Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation. Power Syst IEEE Trans 28:326–334

    Article  Google Scholar 

  37. Abdelsalam AA, El-Saadany EF (2013) Probabilistic approach for optimal planning of distributed generators with controlling harmonic distortions. Gener Transm Distrib IET 7:1105–1115

    Article  Google Scholar 

  38. Al-Sabounchi A, Gow J, Al-Akaidi M (2014) Simple procedure for optimal sizing and location of a single photovoltaic generator on radial distribution feeder. Renew Power Gener IET 8:160–170

    Article  Google Scholar 

  39. Lee S-H, Park J-W (2009) Selection of optimal location and size of multiple distributed generations by using kalman filter algorithm. Power Syst IEEE Trans 24:1393–1400

    Article  Google Scholar 

  40. Singh D, Singh D, Verma K (2007) Ga based optimal sizing and placement of distributed generation for loss minimization. Int J Electr Comput Eng 2:556–562

    Google Scholar 

  41. Alinejad-Beromi Y, Sedighizadeh M, Bayat M, Khodayar M (2007) Using genetic alghoritm for distributed generation allocation to reduce losses and improve voltage profile. In: Universities power engineering conference, UPEC 2007 42nd International. IEEE, pp 954–959

    Google Scholar 

  42. Hussain I, Roy AK (2012) Optimal distributed generation allocation in distribution systems employing modified artificial bee colony algorithm to reduce losses and improve voltage profile. In: 2012 International conference on advances in engineering, science and management (ICAESM), pp 565–570

    Google Scholar 

  43. Murthy VVSN, Kumar A (2013) Comparison of optimal dg allocation methods in radial distribution systems based on sensitivity approaches. Int J Electr Power Energy Syst 53:450–67

    Google Scholar 

  44. Biswas S, Goswami SK, Chatterjee A (2012) Optimum distributed generation placement with voltage sag effect minimization. Energy Convers Manage 53:163–174

    Article  Google Scholar 

  45. Liu Z, Wen F, Ledwich G, Ji X (2011) Optimal sitting and sizing of distributed generators based on a modified primal-dual interior point algorithm. In: 2011 Proceedings of the 4th international conference on electric utility deregulation and restructuring and power technologies (DRPT). IEEE, pp 1360–1365

    Google Scholar 

  46. Popović DH, Greatbanks JA, Begović M, Pregelj A (2005) Placement of distributed generators and reclosers for distribution network security and reliability. Int J Electr Power Energy Syst 27:398–408

    Article  Google Scholar 

  47. Raj PADV, Senthilkumar S, Raja J, Ravichandran S, Palanivelu T (2008) Optimization of distributed generation capacity for line loss reduction and voltage profile improvement using PSO. Elektr J Electr Eng 10:41–8

    Google Scholar 

  48. Ochoa LF, Dent CJ, Harrison GP (2010) Distribution network capacity assessment: variable dg and active networks. IEEE Trans Power Syst 25:87–95

    Article  Google Scholar 

  49. Injeti SK, Kumar NP (2011) Optimal planning of distributed generation for improved voltage stability and loss reduction. Int J Comput Appl 15:40–46

    Google Scholar 

  50. Sedighizadeh M, Rezazadeh A (2008) Using genetic algorithm for distributed generation allocation to reduce losses and improve voltage profile. World Acad Sci Eng Technol 37(2008):251–256

    Google Scholar 

  51. Vovos PN, Harrison GP, Wallace AR, Bialek JW (2005) Optimal power flow as a tool for fault level-constrained network capacity analysis. IEEE Trans Power Syst 20:734–741

    Article  Google Scholar 

  52. Saif A, Pandi VR, Zeineldin H, Kennedy S (2013) Optimal allocation of distributed energy resources through simulation-based optimization. Electr Power Syst Res 104:1–8

    Article  Google Scholar 

  53. Pandi VR, Zeineldin H, **ao W (2013) Determining optimal location and size of distributed generation resources considering harmonic and protection coordination limits. Power Syst IEEE Trans 28:1245–1254

    Article  Google Scholar 

  54. Dent CJ, Ochoa LF, Harrison GP (2010) Network distributed generation capacity analysis using OPF with voltage step constraints. IEEE Trans Power Syst 25:296–304

    Article  Google Scholar 

  55. Keane A, O’Malley M (2005) Optimal allocation of embedded generation on distribution networks. IEEE Trans Power Syst 20:1640–1646

    Article  Google Scholar 

  56. Dent CJ, Ochoa LF, Harrison GP, Bialek JW (2010) Efficient secure ac OPF for network generation capacity assessment. IEEE Trans Power Syst 25:575–583

    Article  Google Scholar 

  57. Caisheng W, Nehrir MH (2004) Analytical approaches for optimal placement of distributed generation sources in power systems. IEEE Trans Power Syst 19:2068–2076

    Article  Google Scholar 

  58. Vovos PN, Bialek JW (2005) Direct incorporation of fault level constraints in optimal power flow as a tool for network capacity analysis. IEEE Trans Power Syst 20:2125–2134

    Article  Google Scholar 

  59. Crossland A, Jones D, Wade N (2014) Planning the location and rating of distributed energy storage in LV networks using a genetic algorithm with simulated annealing. Int J Electr Power Energy Syst 59:103–110

    Article  Google Scholar 

  60. Harrison GP, Wallace AR (2005) Optimal power flow evaluation of distribution network capacity for the connection of distributed generation. IEE Proc Gener Transm Distrib 152:115–122

    Article  Google Scholar 

  61. Porkar S, Poure P, Abbaspour-Tehrani-fard A, Saadate S (2010) A novel optimal distribution system planning framework implementing distributed generation in a deregulated electricity market. Electr Power Syst Res 80:828–837

    Article  MATH  Google Scholar 

  62. Lo x, pez-Lezama JM, Padilha-Feltrin A, Contreras J Mu et al (2011) Optimal contract pricing of distributed generation in distribution networks. IEEE Trans Power Syst 26:128–36

    Google Scholar 

  63. Keane A, O’Malley M (2007) Optimal utilization of distribution networks for energy harvesting. IEEE Trans Power Syst 22:467–475

    Article  Google Scholar 

  64. Gautam D, Mithulananthan N (2007) Optimal DG placement in deregulated electricity M. Pesaran HA et al. Renew Sustain Energy Rev. Electr Power Syst Res 77:1627–36

    Google Scholar 

  65. Jabr RA, Pal BC (2009) Ordinal optimisation approach for locating and sizing of distributed generation. Gener Transm Distrib IET 3:713–723

    Article  Google Scholar 

  66. Phonrattanasak P, Miyatake M, Sakamoto O (2013) Optimal location and sizing of solar farm on japan east power system using multi objective bees algorithm. In: Energytech. IEEE, pp 1–6

    Google Scholar 

  67. Rider MJ, López-Lezama JM, Contreras J, Padilha-Feltrin A (2013) Bilevel approach for optimal location and contract pricing of distributed generation in radial distribution systems using mixed-integer linear programming. Gener Transm Distrib IET 7:724–734

    Article  Google Scholar 

  68. El-khattam W, Hegazy YG, Salama MMA (2005) An integrated distributed generation optimization model for distribution system planning. IEEE Trans Power Syst 20:1158–1165

    Article  Google Scholar 

  69. Zou K, Agalgaonkar AP, Muttaqi KM, Perera S (2012) Distribution system planning with incorporating dg reactive capability and system uncertainties. Sustain Energy IEEE Trans 3:112–123

    Article  Google Scholar 

  70. Harrison GP, Piccolo A, Siano P, Wallace AR (2008) Hybrid GA and OPF evaluation of network capacity for distributed generation connections. Electr Power Syst Res 78:392–398

    Article  Google Scholar 

  71. Algarni AAS, Bhattacharya K (2009) Disco operation considering dg units and their goodness factors. IEEE Trans Power Syst 24:1831–1840

    Article  Google Scholar 

  72. Nekooei K, Farsangi MM, Nezamabadi-Pour H, Lee KY (2013) An improved multiobjective harmony search for optimal placement of dgs in distribution systems. Smart Grid IEEE Trans 4:557–567

    Article  Google Scholar 

  73. Elmitwally A (2013) A new algorithm for allocating multiple distributed generation units based on load centroid concept. Alex Eng J 52:655–663

    Article  Google Scholar 

  74. Ameli A, Bahrami S, Khazaeli F, Haghifam M-R (2014) A multi objective particle swarm optimization for sizing and placement of dgs from dg owner’s and distribution company’s viewpoints. IEEE Trans Power Deliv 29:1831–1840

    Article  Google Scholar 

  75. Muneer W, Bhattacharya K, Canizares CA (2011) Large-scale solar PV investment models, tools, and analysis: the Ontario case. Power Syst IEEE Trans 26:2547–2555

    Article  Google Scholar 

  76. Shaaban MF, Atwa YM, El-Saadany EF (2013) DG allocation for benefit maximization in distribution networks. IEEE Trans Power Syst 28:639–649

    Article  Google Scholar 

  77. Carpinelli G, Celli G, Mocci S, Pilo F, Russo A (2005) Optimisation of embedded generation sizing and siting by using a double trade-off method. IEE Proc Gener Transm Distrib 152:503–513

    Article  Google Scholar 

  78. Rotaru F, Chicco G, Grigoras G, Cartina G (2012) Two-stage distributed generation optimal sizing with clustering-based node selection. Int J Electr Power Energy Syst 40:120–129

    Article  Google Scholar 

  79. Banerjee B, Islam SM (2011) Reliability based optimum location of distributed generation. Int J Electr Power Energy Syst 33:1470–1478

    Article  Google Scholar 

  80. Celli G, Ghiani E, Mocci S, Pilo F (2005) A multiobjective evolutionary algorithm for the sizing and siting of distributed generation. IEEE Trans Power Syst 20:750–757

    Article  Google Scholar 

  81. Abou El-Ela AA, Allam SM, Shatla MM (2010) Maximal optimal benefits of distributed generation using genetic algorithms. Electr Power Syst Res 80:869–877

    Article  Google Scholar 

  82. Sutthibun T, Bhasaputra P (2010) Multi-objective optimal distributed generation placement using simulated annealing. In: 2010 International conference on electrical engineering/electronics computer telecommunications and information technology (ECTI-CON), pp 810–813

    Google Scholar 

  83. Ochoa LF, Padilha-Feltrin A, Harrison GP (2006) Evaluating distributed generation impacts with a multiobjective index. IEEE Trans Power Deliv 21:1452–1458

    Article  Google Scholar 

  84. Esmaili M (2013) Placement of minimum distributed generation units observing power losses and voltage stability with network constraints. IET Gener Transm Distrib 7:813–821

    Article  Google Scholar 

  85. Kayal P, Chanda C (2013) Placement of wind and solar based dgs in distribution system for power loss minimization and voltage stability improvement. Int J Electr Power Energy Syst 53:795–809

    Article  Google Scholar 

  86. Elnashar MM, El Shatshat R, Salama MMA (2010) Optimum siting and sizing of a large distributed generator in a mesh connected system. Electr Power Syst Res 80:690–697

    Article  Google Scholar 

  87. Nayeripour M, Mahboubi-Moghaddam E, Aghaei J, Azizi-Vahed A (2013) Multi-objective placement and sizing of DGs in distribution networks ensuring transient stability using hybrid evolutionary algorithm. Renew Sustain Energy Rev 25:759–767

    Article  Google Scholar 

  88. Singh D, Verma KS (2009) Multiobjective optimization for DG planning with load models. IEEE Trans Power Syst 24:427–436

    Article  MathSciNet  Google Scholar 

  89. Tan WS, Hassan MY, Rahman HA, Abdullah MP, Hussin F (2013) Multi-distributed generation planning using hybrid particle swarm optimisation-gravitational search algorithm including voltage rise issue. IET Gen Transm Distrib 7:929–942

    Article  Google Scholar 

  90. Ochoa LF, Padilha-Feltrin A, Harrison GP (2008) Evaluating distributed time-varying generation through a multiobjective index. IEEE Trans Power Deliv 23:1132–1138

    Article  Google Scholar 

  91. Ghosh S, Ghoshal SP, Ghosh S (2010) Optimal sizing and placement of distributed generation in a network system. Int J Electr Power Energy Syst 32:849–856

    Article  Google Scholar 

  92. Kumar A, Gao W (2010) Optimal distributed generation location using mixed integer non-linear programming in hybrid electricity markets. Gener Transm Distrib IET 4:281–298

    Article  Google Scholar 

  93. El-khattam W, Bhattacharya K, Hegazy Y, Salama MMA (2004) Optimal investment planning for distributed generation in a competitive electricity market. IEEE Trans Power Syst 19:1674–1684

    Article  Google Scholar 

  94. Medina A, Hernandez J, Jurado F (2006) Optimal placement and sizing procedure for PV systems on radial distribution systems. In: 2006 PowerCon 2006 International conference on power system technology. IEEE, pp 1–6

    Google Scholar 

  95. ** T, Tian Y, Zhang CW, Coit DW (2013) Multicriteria planning for distributed wind generation under strategic maintenance. Power Deliv IEEE Trans 28:357–367

    Article  Google Scholar 

  96. Khalesi N, Haghifam MR (2009) Application of dynamic programming for distributed generation allocation. In: Electrical power & energy conference (EPEC). IEEE, pp 1–6

    Google Scholar 

  97. Hung DQ, Mithulananthan N, Bansal R (2014) Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability. Appl Energy 113:1162–1170

    Article  Google Scholar 

  98. Jain N, Singh S, Srivastava S (2013) A generalized approach for dg planning and viability analysis under market scenario. Ind Electron IEEE Trans 60:5075–5085

    Article  Google Scholar 

  99. Akorede MF, Hizam H, Aris I, Ab Kadir MZA (2011) Effective method for optimal allocation of distributed generation units in meshed electric power systems. Gener Transm Distrib IET 5:276–287

    Article  Google Scholar 

  100. Golshan MEH, Arefifar SA (2006) Distributed generation, reactive sources and network configuration planning for power and energy-loss reduction. IEE Proc Gener Transm Distrib 153:127–136

    Article  Google Scholar 

  101. Haesen E, Driesen J, Belmans R (2007) Robust planning methodology for integration of stochastic generators in distribution grids. IET Renew Power Gener 1:25–32

    Article  Google Scholar 

  102. Hernández J, Medina A, Jurado F (2007) Optimal allocation and sizing for profitability and voltage enhancement of PV systems on feeders. Renew Energy 32:1768–1789

    Article  Google Scholar 

  103. Chowdhury AA, Agarwal SK, Koval DO (2003) Reliability modeling of distributed generation in conventional distribution systems planning and analysis. IEEE Trans Ind Appl 39:1493–1498

    Article  Google Scholar 

  104. Yiming M, Miu KN (2003) Switch placement to improve system reliability for radial distribution systems with distributed generation. IEEE Trans Power Syst 18:1346–1352

    Article  Google Scholar 

  105. Soroudi A, Afrasiab M (2012) Binary PSO-based dynamic multi-objective model for distributed generation planning under uncertainty. IET Renew Power Gener 6:67–78

    Article  Google Scholar 

  106. Borges CLT, Falcão DM (2006) Optimal distributed generation allocation for reliability, losses, and voltage improvement. Int J Electr Power Energy Syst 28:413–420

    Article  Google Scholar 

  107. Lingfeng W, Singh C (2008) Reliability-constrained optimum placement of reclosers and distributed generators in distribution networks using an ant colony system algorithm. IEEE Trans Syst Man Cybern Appl Rev Part C 38:757–764

    Article  Google Scholar 

  108. Zhu D, Broadwater RP, Tam KS, Seguin R, Asgeirsson H (2006) Impact of DG placement on reliability and efficiency with time-varying loads. IEEE Trans Power Syst 21:419–427

    Article  Google Scholar 

  109. Jen-Hao T, Tain-Syh L, Yi-Hwa L (2002) Strategic distributed generator placements for service reliability improvements. In Power engineering society summer meeting, vol 2. IEEE, pp 719–724

    Google Scholar 

  110. Wang DTC, Ochoa LF, Harrison GP (2010) Dg impact on investment deferral: network planning and security of supply. IEEE Trans Power Syst 25:1134–1141

    Article  Google Scholar 

  111. Ochoa LF, Padilha-Feltrin A, Harrison GP (2008) Time-series-based maximization of distributed wind power generation integration. IEEE Trans Energy Convers 23:968–974

    Article  Google Scholar 

  112. Alarcon-Rodriguez A, Haesen E, Ault G, Driesen J, Belmans R (2009) Multi-objective planning framework for stochastic and controllable distributed energy resources. Renew Power Gener IET 3:227–238

    Article  Google Scholar 

  113. Atwa YM, El-Saadany EF, Salama MMA, Seethapathy R (2010) Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans Power Syst 25:360–370

    Article  Google Scholar 

  114. Khodr HM, Silva MR, Vale Z, Ramos C (2010) A probabilistic methodology for distributed generation location in isolated electrical service area. Electr Power Syst Res 80:390–399

    Article  Google Scholar 

  115. Keane A, Zhou Q, Bialek JW, O’Malley M (2009) Planning and operating non-firm distributed generation. Renew Power Gener IET 3:455–464

    Article  Google Scholar 

  116. Abu-Mouti F, El-Hawary M (2011) Heuristic curve-fitted technique for distributed generation optimisation in radial distribution feeder systems. IET Gener Transm Distrib 5:172–180

    Article  Google Scholar 

  117. AlRashidi M, AlHajri M (2011) Optimal planning of multiple distributed generation sources in distribution networks: a new approach. Energy Convers Manag 52:3301–3308

    Article  Google Scholar 

  118. Lee SH, Park J-W (2013) Optimal placement and sizing of multiple DGs in a practical distribution system by considering power loss. Ind Appl IEEE Trans 49:2262–2270

    Article  Google Scholar 

  119. Paudyal S, El-Saadany EF, El Chaar L, Lamont LA (2010) Optimal size of distributed generation to minimize distribution loss using dynamic programming. In: 2010 IEEE International conference on power and energy (PECon), pp 527–532

    Google Scholar 

  120. Hengsritawat V, Tayjasanant T, Nimpitiwan N (2012) Optimal sizing of photovoltaic distributed generators in a distribution system with consideration of solar radiation and harmonic distortion. Int J Electr Power Energy Syst 39:36–47

    Article  Google Scholar 

  121. Singh RK, Goswami SK (2010) Optimum allocation of distributed generations based on nodal pricing for profit, loss reduction, and voltage improvement including voltage. M Pesaran HA et al. Renew Sustain Energy Rev. Int J Electr Power Energy Syst 32:637–44

    Google Scholar 

  122. Jamil M, Kirmani S (2012) Optimal allocation of spv based dg system for loss reduction and voltage improvement in radial distribution systems using approximate reasoning. In: 2012 IEEE Proceedings of the 5th India international conference on power electronics (IICPE). IEEE, pp 1–5

    Google Scholar 

  123. Roa-Sepulveda CA, Pavez-Lazo BJ (2003) A solution to the optimal power flow using simulated annealing. Int J Electr Power Energy Syst 25:47–57

    Article  Google Scholar 

  124. Lee KY, Yang FF (1998) Optimal reactive power planning using evolutionary algorithms: a comparative study for evolutionary programming, evolutionary strategy, genetic algorithm, and linear programming. IEEE Trans Power Syst 13:101–108

    Article  Google Scholar 

  125. Kumar V, Kumar HCR, Gupta I, Gupta HO (2010) Dg integrated approach for service restoration under cold load pickup. IEEE Trans Power Deliv 25:398–406

    Article  Google Scholar 

  126. Morren J, de Haan SW (2008) Maximum penetration level of distributed generation without violating voltage limits. In: SmartGrids for distribution, 2008 IET-CIRED CIRED seminar. IET, pp 1–4

    Google Scholar 

  127. Khan H, Choudhry MA (2010) Implementation of distributed generation (IDG) algorithm for performance enhancement of distribution feeder under extreme load growth. Int J Electr Power Energy Syst 32:985–997

    Article  Google Scholar 

  128. Haghifam M, Falaghi H, Malik OP (2008) Risk-based distributed generation placement. Gener Transm Distrib IET 2:252–260

    Article  Google Scholar 

  129. Standard B (1995) Voltage characteristics of electricity supplied by public distribution systems. BS EN 50160

    Google Scholar 

  130. Holdsworth L, Jenkins N, Strbac G (2001) Electrical stability of large, offshore wind farms. In: 2001 Proceedings of the seventh international conference on AC-DC power transmission (Conference Publ No 485), pp 156–161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Shankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shankar, C.K., Kathirvel, C. (2023). Objectives and Constraints for Optimal Allocation of Distributed Energy Sources—A Review. In: Siano, P., Williamson, S., Beevi, S. (eds) Intelligent Solutions for Smart Grids and Smart Cities. IPECS 2022. Lecture Notes in Electrical Engineering, vol 1022. Springer, Singapore. https://doi.org/10.1007/978-981-99-0915-5_1

Download citation

Publish with us

Policies and ethics

Navigation