A Note on Complex-Valued Fractal Functions on the Sierpiński Gasket

  • Conference paper
  • First Online:
Applied Analysis, Optimization and Soft Computing (ICNAAO 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 419))

  • 197 Accesses

Abstract

Traditional non-recursive approximation methods are less versatile than fractal interpolation and approximation approaches. The concept of fractal interpolation functions (FIFs) have been found to be an effective technique for generating interpolants and approximants which can approximate functions generated by nature that exhibit self-similarity when magnified. Using an iterated function system (IFS), Barnsley discovered the FIFs, which is the most prominent approach for constructing fractals. In this article, we investigate some properties of the real-valued fractal operator and the complex-valued fractal operator defined on the Sierpiński gasket (SG in short). We also calculate the bound for the perturbation error on SG. Furthermore, we prove that the complex-valued fractal operator is bounded. In the last part, we establish the connection between the norm of the real-valued fractal operator and the complex-valued fractal operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, V., Som, T.: Fractal dimension of \(\alpha \)-fractal function on the Sierpiński Gasket. Eur. Phys. J. Spec. Top. (2021). https://doi.org/10.1140/epjs/s11734-021-00304-9

  2. Agrawal, V., Som, T.: \(L^{p}\) approximation using fractal functions on the Sierpiński gasket. Results Math. 77(2), 1–17 (2021)

    Google Scholar 

  3. Agrawal, V., Som, T., Verma, S.: On bivariate fractal approximation. J. Anal. (2022). https://doi.org/10.1007/s41478-022-00430-0

  4. Bagby, T.: \(\cal{L} ^p\) approximation by analytic functions. J. Approx. Theory 5, 401–404 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 301–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barnsley, M.F.: Fractals Everywhere. Academic, Orlando, Florida (1988)

    MATH  Google Scholar 

  7. Celik, D., Kocak, S., Özdemir, Y.: Fractal interpolation on the Sierpiński Gasket. J. Math. Anal. Appl. 337, 343–347 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jha, S., Verma, S., Chand, A. K. B.: Non-stationary zipper \(\alpha \)-fractal functions and associated fractal operator. Fractional Calculus and Applied Analysis (2022). https://doi.org/10.1007/s13540-022-00067-7

  9. Jha, S., Verma, S.: Dimensional analysis of \(\alpha \)-fractal functions. Results Math 76(4), 1–24 (2021)

    Article  MathSciNet  Google Scholar 

  10. Kigami, J.: Analysis on Fractals. Cambridge University Press, Cambridge, UK (2001)

    Book  MATH  Google Scholar 

  11. Massopust, P.R.: Fractal Functions, Fractal Surfaces, and Wavelets, 2nd edn. Academic (2016)

    MATH  Google Scholar 

  12. Navascués, M.A.: Fractal approximation. Complex Anal. Oper. Theory 4, 953–974 (2010). https://doi.org/10.1007/s11785-009-0033-1

  13. Navascués, M.A., Verma, S., Viswanathan, P.: Concerning the Vector-Valued Fractal Interpolation Functions on the Sierpiński Gasket. Mediterr. J. Math. 18(5), 1–26 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Prasad, S. A., Verma S.: Fractal Interpolation Function On Products of the Sierpiński Gaskets (2022). ar**v:2206.01920v1

  15. Ri, S.: Fractal Functions on the Sierpiński Gasket. Chaos, Solitons Fractals 138, 110142 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ri, S.G., Ruan, H.J.: Some properties of fractal interpolation functions on Sierpiński gasket. J. Math. Anal. Appl. 380, 313–322 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ruan, H.J.: Fractal interpolation functions on post critically finite self-similar sets. Fractals 18, 119–125 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sahu, A., Priyadarshi, A.: On the box-counting dimension of graphs of harmonic functions on the Sierpiński gasket. J. Math. Anal. Appl. 487, 124036 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Strichartz, R.S.: Differential Equations on Fractals. Princeton University Press, Princeton, NJ (2006)

    Book  MATH  Google Scholar 

  20. Verma, S., Viswanathan, P.: A fractal operator associated with bivariate fractal interpolation functions on rectangular grids. Result Math. 75, 25 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Verma, S., Viswanathan, P.: Katugampola fractional integral and fractal dimension of bivariate functions. Results Math. 76, 165 (2021). https://doi.org/10.1007/s00025-021-01475-6

  22. Verma, S., Viswanathan, P.: A revisit to \(\alpha \)-fractal function and box dimension of its graph. Fractals 27(06), 1950090 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Verma, S., Massopust, P. R.: Dimension preserving approximation, To appear in Aequationes Mathematicae, https://doi.org/10.48550/ar**v.2002.05061

  24. Verma, S., Sahu, A.: Bounded variation on the Sierpiński Gasket. Fractals (2022). https://doi.org/10.1142/S0218348X2250147X

    Article  MATH  Google Scholar 

  25. Verma, S., Viswanathan, P.: Parameter identification for a class of bivariate fractal interpolation functions and constrained approximation. Numer. Funct. Anal. Optim. 41(9), 1109–1148 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agrawal, V., Som, T. (2023). A Note on Complex-Valued Fractal Functions on the Sierpiński Gasket. In: Som, T., Ghosh, D., Castillo, O., Petrusel, A., Sahu, D. (eds) Applied Analysis, Optimization and Soft Computing. ICNAAO 2021. Springer Proceedings in Mathematics & Statistics, vol 419. Springer, Singapore. https://doi.org/10.1007/978-981-99-0597-3_7

Download citation

Publish with us

Policies and ethics

Navigation