Advances in Polymer Optimization for Enhanced Drug Delivery

  • Chapter
  • First Online:
Polymeric Micelles: Principles, Perspectives and Practices

Abstract

Nanocarriers are being used to deliver those active pharmaceutical ingredients (APIs) to the site of action that are toxic, biodegradable, and have less bioavailability. One type of nanocarrier that can meet the aforementioned criteria in the form of therapeutic formulations is polymeric micelles. They are revolutionary drug delivery nanocarriers that can be developed using various types of polymers to achieve specific features such as target specificity and controlled release for the drugs. There are different categories of polymers used to prepare such micelles such as graft polymers, diblock polymers, and triblock polymers. Diblock polymers such as polymer made up of poly(ε-caprolactone) [PCL] and poly(ethylene glycol) [PEG]; graft copolymers such as polymer made up of gelatin and hyaluronic acid; and triblock copolymers such as polymer made of polyethylene oxide PEO-b-PB-b-PEO (PB, polybutadiene; PEO, polyethylene oxide) are being employed in designing and develo** improved polymeric micelles which may respond better in the harsh inter/intracellular environments, for example: in changed ionic concentrations, in presence of several proteins and enzymes, pH changes and even at higher temperatures. In the present chapter, various types of polymers, which are used to prepare conventional, mucoadhesive, pH-sensitive and temperature-sensitive polymeric micelles, are discussed. The major focus of this chapter is to review various polymers used worldwide, which are used to obtain specialized micelles for specific applications, with desired characteristics for drug formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achilleos DS, Vamvakaki M (2010) End-grafted polymer chains onto inorganic nano-objects. Materials 3(3):1981–2026

    Article  CAS  PubMed Central  Google Scholar 

  • Alemayehu YA, Fan WL, Ilhami FB, Chiu CW, Lee DJ, Cheng CC (2020) Photosensitive supramolecular micelle-mediated cellular uptake of anticancer drugs enhances the efficiency of chemotherapy. Int J Mol Sci 21(13):4677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445

    PubMed  PubMed Central  Google Scholar 

  • Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K (2005a) Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 16(1):122–130

    Article  CAS  PubMed  Google Scholar 

  • Bae Y, Jang WD, Nishiyama N, Fukushima S, Kataoka K (2005b) Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 1(3):242–250

    Article  CAS  PubMed  Google Scholar 

  • Bastakoti BP, Wu KCW, Inoue M, Yusa SI, Nakashima K, Yamauchi Y (2013) Multifunctional Core-Shell-Corona-type polymeric micelles for anticancer drug-delivery and imaging. Chem A Eur J 19(15):4812–4817

    Article  CAS  Google Scholar 

  • Bongiovì F, Di Prima G, Palumbo FS, Licciardi M, Pitarresi G, Giammona G (2017) Hyaluronic acid-based micelles as ocular platform to modulate the loading, release, and corneal permeation of corticosteroids. Macromol Biosci 17(12):1700261

    Article  Google Scholar 

  • Bongiovì F, Fiorica C, Palumbo FS, Di Prima G, Giammona G, Pitarresi G (2018) Imatinib-loaded micelles of hyaluronic acid derivatives for potential treatment of neovascular ocular diseases. Mol Pharm 15(11):5031–5045

    Article  PubMed  Google Scholar 

  • Cheng C, Convertine AJ, Stayton PS, Bryers JD (2012a) Multifunctional triblock copolymers for intracellular messenger RNA delivery. Biomaterials 33(28):6868–6876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng R, Wang X, Chen W, Meng F, Deng C, Liu H, Zhong Z (2012b) Biodegradable poly (ε-caprolactone)-g-poly (2-hydroxyethyl methacrylate) graft copolymer micelles as superior nano-carriers for “smart” doxorubicin release. J Mater Chem 22(23):11730–11738

    Article  CAS  Google Scholar 

  • Cortez MA, Godbey WT, Fang Y, Payne ME, Cafferty BJ, Kosakowska KA, Grayson SM (2015) The synthesis of cyclic poly (ethylene imine) and exact linear analogues: an evaluation of gene delivery comparing polymer architectures. J Am Chem Soc 137(20):6541–6549

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SK, Bhagat PR, Chidambaram K (2017) Biopolymer composites with high dielectric performance: interface engineering. In: Biopolymer composites in electronics. Elsevier, Amsterdam, pp 27–128

    Chapter  Google Scholar 

  • Endres TK, Beck-Broichsitter M, Samsonova O, Renette T, Kissel TH (2011) Self-assembled biodegradable amphiphilic PEG–PCL–lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery. Biomaterials 32(30):7721–7731

    Article  CAS  PubMed  Google Scholar 

  • Epps TH, Cochran EW, Bailey TS, Waletzko RS, Hardy CM, Bates FS (2004) Ordered network phases in linear poly (isoprene-b-styrene-b-ethylene oxide) triblock copolymers. Macromolecules 37(22):8325–8341

    Article  CAS  Google Scholar 

  • Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S (2021) Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 332:312–336

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves C, Ferreira N, Lourenço L (2021) Production of low molecular weight chitosan and chitooligosaccharides (COS): a review. Polymers 13(15):2466

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo M, Yan Y, Liu X, Yan H, Liu K, Zhang H, Cao Y (2010) Multilayer nanoparticles with a magnetite core and a polycation inner shell as pH-responsive carriers for drug delivery. Nanoscale 2(3):434–441

    Article  CAS  PubMed  Google Scholar 

  • Gupta MK, Meyer TA, Nelson CE, Duvall CL (2012) Poly (PS-b-DMA) micelles for reactive oxygen species triggered drug release. J Control Release 162(3):591–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanafy NA, El-Kemary M, Leporatti S (2018) Micelles structure development as a strategy to improve smart cancer therapy. Cancers 10(7):238

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill DJ, O’Donnell JH, O’Sullivan PW (1985) Analysis of the mechanism of copolymerization of styrene and maleic anhydride. Macromolecules 18(1):9–17

    Article  CAS  Google Scholar 

  • Hoang NH, Lim C, Sim T, Oh KT (2017) Triblock copolymers for nano-sized drug delivery systems. J Pharm Investig 47(1):27–35

    Article  CAS  Google Scholar 

  • Hu L, Wang Y, Yin Q, Du K, Yin Q (2019) Multiple morphologies of a poly (methyl methacrylate)-block-poly (N, N-dimethyl aminoethyl methacrylate) copolymer with pH-responsiveness and thermoresponsiveness. J Appl Polym Sci 136(38):47972

    Article  Google Scholar 

  • Iqbal S, Martins AF, Sohail M, Zhao J, Deng Q, Li M, Zhao Z (2022) Synthesis and characterization of poly (β-amino Ester) and applied PEGylated and non-PEGylated poly (β-amino ester)/plasmid DNA nanoparticles for efficient gene delivery. Front Pharmacol 13:722

    Article  Google Scholar 

  • Irvine DJ, Dane EL (2020) Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol 20(5):321–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James HP, John R, Alex A, Anoop K (2014) Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm Sin B 4(2):120–127

    Article  Google Scholar 

  • Jee JP, McCoy A, Mecozzi S (2012) Encapsulation and release of amphotericin B from an ABC triblock fluorous copolymer. Pharm Res 29(1):69–82

    Article  CAS  PubMed  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654

    Article  CAS  PubMed  Google Scholar 

  • Jia N, Ye Y, Wang Q, Zhao X, Hu H, Chen D, Qiao M (2017) Preparation and evaluation of poly (L-histidine) based pH-sensitive micelles for intracellular delivery of doxorubicin against MCF-7/ADR cells. Asian J Pharma Sci 12(5):433–441

    Article  Google Scholar 

  • Karimi M, Eslami M, Sahandi-Zangabad P, Mirab F, Farajisafiloo N, Shafaei Z et al (2016) pH-sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(5):696–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim GM, Bae YH, Jo WH (2005) pH-induced micelle formation of poly (histidine-co-phenylalanine)-block-poly (ethylene glycol) in aqueous media. Macromol Biosci 5(11):1118–1124

    Article  CAS  PubMed  Google Scholar 

  • Kubowicz S, Baussard JF, Lutz JF, Thünemann AF, von Berlepsch H, Laschewsky A (2005) Multicompartment micelles formed by self-assembly of linear ABC triblock copolymers in aqueous medium. Angew Chem Int Ed 44(33):5262–5265

    Article  CAS  Google Scholar 

  • Kulthe SS, Choudhari YM, Inamdar NN, Mourya V (2012) Polymeric micelles: authoritative aspects for drug delivery. Des Monomer Polym 15(5):465–521

    Article  CAS  Google Scholar 

  • Larraneta E, Henry M, Irwin NJ, Trotter J, Perminova AA, Donnelly RF (2018) Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohydr Polym 181:1194–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Thompson DH (2017) Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(5):e1450

    Article  Google Scholar 

  • Lee JW, Park JH, Robinson JR (2000) Bioadhesive-based dosage forms: the next generation. J Pharm Sci 89(7):850–866

    Article  CAS  PubMed  Google Scholar 

  • Lee ES, Na K, Bae YH (2005) Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 103(2):405–418

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Son SH, Sharma R, Won YY (2011) A discussion of the pH-dependent protonation behaviors of poly (2-(dimethylamino) ethyl methacrylate)(PDMAEMA) and poly (ethylenimine-ran-2-ethyl-2-oxazoline)(P (EI-r-EOz)). J Phys Chem B 115(5):844–860

    Article  CAS  PubMed  Google Scholar 

  • Letchford K, Liggins R, Burt H (2008) Solubilization of hydrophobic drugs by methoxy poly (ethylene glycol)-block-polycaprolactone diblock copolymer micelles: theoretical and experimental data and correlations. J Pharm Sci 97(3):1179–1190

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li H, Liu G, Deng Z, Wu S, Li P et al (2012) Magnetite-loaded fluorine-containing polymeric micelles for magnetic resonance imaging and drug delivery. Biomaterials 33(10):3013–3024

    Article  PubMed  Google Scholar 

  • Lim C, Youn YS, Lee KS, Hoang NH, Sim T, Lee ES, Oh KT (2016) Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers. Int J Nanomedicine 11:703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Weaver JV, Tang Y, Billingham NC, Armes SP, Tribe K (2002) Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers. Macromolecules 35(16):6121–6131

    Article  CAS  Google Scholar 

  • Liu Y, Sun J, Cao W, Yang J, Lian H, Li X et al (2011) Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm 421(1):160–169

    Article  CAS  PubMed  Google Scholar 

  • Liu R, He B, Li D, Lai Y, Tang JZ, Gu Z (2012) Synthesis and characterization of poly (ethylene glycol)-b-poly (l-histidine)-b-poly (l-lactide) with pH-sensitivity. Polymer 53(7):1473–1482

    Article  CAS  Google Scholar 

  • Liu Y, Li Y, Keskin D, Shi L (2019) Poly (β-amino esters): synthesis, formulations, and their biomedical applications. Adv Healthc Mater 8(2):1801359

    Google Scholar 

  • Matsen MW (2020) Field theoretic approach for block polymer melts: SCFT and FTS. J Chem Phys 152(11):110901

    Article  CAS  PubMed  Google Scholar 

  • Mavronasou K, Zamboulis A, Klonos P, Kyritsis A, Bikiaris DN, Papadakis R, Deligkiozi I (2022) Poly (vinyl pyridine) and its quaternized derivatives: understanding their solvation and solid state properties. Polymers 14(4):804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Gu D, Zhang F, Shi Y, Cheng L, Feng D et al (2006) A family of highly ordered mesoporous polymer resin and carbon structures from organic—organic self-assembly. Chem Mater 18(18):4447–4464

    Article  CAS  Google Scholar 

  • Min KH, Kim JH, Bae SM, Shin H, Kim MS, Park S et al (2010) Tumoral acidic pH-responsive MPEG-poly (β-amino ester) polymeric micelles for cancer targeting therapy. J Control Release 144(2):259–266

    Article  CAS  PubMed  Google Scholar 

  • Mishra AK, Lim J, Lee J, Park S, Seo Y, Hwang H, Kim JK (2021) Control drug release behavior by highly stable and pH sensitive poly (N-vinylpyrrolidone)-block-poly (4-vinylpyridine) copolymer micelles. Polymer 213:123329

    Article  CAS  Google Scholar 

  • Moleavin I, Grama S, Cârlescu I, Scutaru D, Hurduc N (2010) Photosensitive micelles based on polysiloxanes containing azobenzene moieties. Polym Bull 65(1):69–81

    Article  CAS  Google Scholar 

  • Morgese G, Cavalli E, Rosenboom JG, Zenobi-Wong M, Benetti EM (2018) Cyclic polymer grafts that lubricate and protect damaged cartilage. Angew Chem 130(6):1637–1642

    Article  Google Scholar 

  • Natarajan JV, Nugraha C, Ng XW, Venkatraman S (2014) Sustained-release from nanocarriers: a review. J Control Release 193:122–138

    Article  CAS  PubMed  Google Scholar 

  • Nizardo NM, Alimin DF, Lestari ML (2022) Synthesis and characterization of dual-responsive poly (N-vinylcaprolactam-co-N-methylolacrylamide) nanogels. Des Monomers Polym 25(1):155–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27(12):2569–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh KT, Lee ES, Kim D, Bae YH (2008) L-histidine-based pH-sensitive anticancer drug carrier micelle: reconstitution and brief evaluation of its systemic toxicity. Int J Pharm 358(1–2):177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohara T, Sato T, Shimizu N, Prescher G, Schwind H, Weiberg O et al (2000) Acrylic acid and derivatives. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Ohya S, Nakayama Y, Matsuda T (2004) In vivo evaluation of poly (N-isopropylacrylamide)(PNIPAM)-grafted gelatin as an in situ-formable scaffold. J Artif Organs 7(4):181–186

    Article  CAS  PubMed  Google Scholar 

  • Ortel E, Fischer A, Chuenchom L, Polte J, Emmerling F, Smarsly B, Kraehnert R (2012) New triblock copolymer templates, PEO-PB-PEO, for the synthesis of Titania films with controlled Mesopore size, wall thickness, and bimodal porosity. Small 8(2):298–309

    Article  CAS  PubMed  Google Scholar 

  • Panja S, Dey G, Bharti R, Kumari K, Maiti TK, Mandal M, Chattopadhyay S (2016) Tailor-made temperature-sensitive micelle for targeted and on-demand release of anticancer drugs. ACS Appl Mater Interfaces 8(19):12063–12074

    Article  CAS  PubMed  Google Scholar 

  • Park J, Jo S, Lee YM, Saravanakumar G, Lee J, Park D, Kim WJ (2021) Enzyme-triggered disassembly of polymeric micelles by controlled depolymerization via cascade cyclization for anticancer drug delivery. ACS Appl Mater Interfaces 13(7):8060–8070

    Article  CAS  PubMed  Google Scholar 

  • Peng CL, Shieh MJ, Tsai MH, Chang CC, Lai PS (2008) Self-assembled star-shaped chlorin-core poly (ɛ-caprolactone)-poly (ethylene glycol) diblock copolymer micelles for dual chemo-photodynamic therapies. Biomaterials 29(26):3599–3608

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, You D, Lin F, Wei J, Wang Y, Bi Y (2019) Enzyme triggered disassembly of amphiphilic linear-dendritic block copolymer micelles based on poly [N-(2-hydroxyethyl-l-glutamine)]. Polym Chem 10(1):94–105

    Article  CAS  Google Scholar 

  • Ren H, Yang P, Yu H (2022) Recent progress in azopyridine-containing supramolecular assembly: from photoresponsive liquid crystals to light-driven devices. Molecules 27(13):3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salamat-Miller N, Chittchang M, Johnston TP (2005) The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev 57(11):1666–1691

    Article  CAS  PubMed  Google Scholar 

  • Schild HG (1992) Poly (N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17(2):163–249

    Article  CAS  Google Scholar 

  • Selestin I, Thangam R, Fathima NN (2018) Polymeric micelle of a gelatin-oleylamine conjugate: a prominent drug delivery carrier for treating triple negative breast cancer cells. ACS Appl Bio Mater 1(5):1725–1734

    Article  Google Scholar 

  • Senapati S, Mahanta AK, Kumar S, Maiti P (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3(1):1–19

    CAS  Google Scholar 

  • Sharma S, Dua A, Malik A (2014) Polyaspartic acid based superabsorbent polymers. Eur Polym J 59:363–376

    Article  CAS  Google Scholar 

  • Singh S, Webster DC, Singh J (2007) Thermosensitive polymers: synthesis, characterization, and delivery of proteins. Int J Pharm 341(1–2):68–77

    Article  CAS  PubMed  Google Scholar 

  • Sogias IA, Williams AC, Khutoryanskiy VV (2008) Why is chitosan mucoadhesive? Biomacromolecules 9(7):1837–1842

    Article  CAS  PubMed  Google Scholar 

  • Spadea A, Rios de la Rosa JM, Tirella A, Ashford MB, Williams KJ, Stratford IJ, Tirelli N, Mehibel M (2019) Evaluating the efficiency of hyaluronic acid for tumor targeting via CD44. Mol Pharm 16(6):2481–2493

    Article  CAS  PubMed  Google Scholar 

  • Sugihara S, Kanaoka S, Aoshima S (2004) Stimuli-responsive ABC triblock copolymers by sequential living cationic copolymerization: multistage self-assemblies through micellization to open association. J Polym Sci A Polym Chem 42(11):2601–2611

    Article  CAS  Google Scholar 

  • Tang Y, Liu SY, Armes SP, Billingham NC (2003) Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers. Biomacromolecules 4(6):1636–1645

    Article  CAS  PubMed  Google Scholar 

  • Tang M, Hu P, Zheng Q, Tirelli N, Yang X, Wang Z et al (2017) Polymeric micelles with dual thermal and reactive oxygen species (ROS)-responsiveness for inflammatory cancer cell delivery. J Nanobiotechnol 15(1):1–11

    Article  Google Scholar 

  • Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58(14):1532–1555

    Article  CAS  PubMed  Google Scholar 

  • Tran VA, Lee SW (2021) pH-triggered degradation and release of doxorubicin from zeolitic imidazolate framework-8 (ZIF8) decorated with polyacrylic acid. RSC Adv 11(16):9222–9234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Butsele K, Cajot S, Van Vlierberghe S, Dubruel P, Passirani C, Benoit JP et al (2009) pH-responsive flower-type micelles formed by a biotinylated poly (2-vinylpyridine)-block-poly (ethylene oxide)-block-poly (ε-caprolactone) triblock copolymer. Adv Funct Mater 19(9):1416–1425

    Article  Google Scholar 

  • Van de Wetering P, Schuurmans-Nieuwenbroek NME, Van Steenbergen MJ, Crommelin DJA, Hennink WE (2000) Copolymers of 2-(dimethylamino) ethyl methacrylate with ethoxytriethylene glycol methacrylate or N-vinyl-pyrrolidone as gene transfer agents. J Control Release 64(1–3):193–203

    Article  PubMed  Google Scholar 

  • Varshosaz J, Sadeghi-Aliabadi H, Ghasemi S, Behdadfar B (2013) Use of magnetic folate-dextran-retinoic acid micelles for dual targeting of doxorubicin in breast cancer. Biomed Res Int 2013:680712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Ravi S, Martinez GV, Chinnasamy V, Raulji P, Howell M et al (2012) Dual-purpose magnetic micelles for MRI and gene delivery. J Control Release 163(1):82–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ways TM, Lau WM, Khutoryanskiy VV (2018) Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 10(3):267

    Article  Google Scholar 

  • Wei J, Shuai X, Wang R, He X, Li Y, Ding M et al (2017) Clickable and imageable multiblock polymer micelles with magnetically guided and PEG-switched targeting and release properties for precise tumor theranosis. Biomaterials 145:138–153

    Article  CAS  PubMed  Google Scholar 

  • Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJ (2013) Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65(1):315–499

    Article  PubMed  Google Scholar 

  • Williams RJ, Pitto-Barry A, Kirby N, Dove AP, O’Reilly RK (2016) Cyclic graft copolymer unimolecular micelles: effects of cyclization on particle morphology and thermoresponsive behavior. Macromolecules 49(7):2802–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Zhu L, Torchilin VP (2013) pH-sensitive poly (histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials 34(4):1213–1222

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Zheng L, Li C, **ao Y, Huo S, Zhang B (2017) Grafted copolymer micelles with pH triggered charge reversibility for efficient doxorubicin delivery. J Polym Sci A Polym Chem 55(12):2036–2046

    Article  CAS  Google Scholar 

  • Xue YN, Huang ZZ, Zhang JT, Liu M, Zhang M, Huang SW, Zhuo RX (2009) Synthesis and self-assembly of amphiphilic poly (acrylic acid-b-DL-lactide) to form micelles for pH-responsive drug delivery. Polymer 50(15):3706–3713

    Article  CAS  Google Scholar 

  • Yang XL, Luo YL, Xu F, Chen YS (2014) Thermosensitive mPEG-b-PA-g-PNIPAM comb block copolymer micelles: effect of hydrophilic chain length and camptothecin release behavior. Pharm Res 31(2):291–304

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Weber C, Schubert US, Hoogenboom R (2017) Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater Horiz 4(2):109–116

    Article  CAS  Google Scholar 

  • Zhou Q, Zhang L, Yang T, Wu H (2018) Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 13:2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuegg J, Cooper AM (2012) Drug-likeness and increased hydrophobicity of commercially available compound libraries for drug screening. Curr Top Med Chem 12(14):1500–1513

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rachana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kashyap, M. et al. (2023). Advances in Polymer Optimization for Enhanced Drug Delivery. In: Singh, S.K., Gulati, M., Mutalik, S., Dhanasekaran, M., Dua, K. (eds) Polymeric Micelles: Principles, Perspectives and Practices. Springer, Singapore. https://doi.org/10.1007/978-981-99-0361-0_2

Download citation

Publish with us

Policies and ethics

Navigation