Large-Scale Data Challenges: Instability in Statistical Learning

  • Conference paper
  • First Online:
Applied Intelligence (ICAI 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2015))

Included in the following conference series:

  • 169 Accesses

Abstract

Numerous approximation methods have been developed to approximate both the kernel matrix and its inverse. We investigate one such influential approximation that has recently gained popularity. However, our results indicate that this approximation fails to address the ill-conditioning of the kernel matrix, potentially leading to significantly large biases and highly unstable prediction results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 64.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 80.24
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge, MA (2002)

    Google Scholar 

  2. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer (1999). https://doi.org/10.1007/978-1-4612-1494-6

  3. Belkin, M.: Approximation beats concentration? An approximation view on inference with smooth radial kernels. Proc. Mach. Learn. Res. 75, 1–14 (2018)

    Google Scholar 

  4. Williams, C., Seeger, M.: Using the Nyström method to speed up kernel machines. In: Leen, T., Dietterich, T., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13. MIT Press, Cambridge (2000)

    Google Scholar 

  5. Drineas, P., Mahoney, M.W.: On the Nystrom method for approximating a gram matrix for improved kernel-based learning. J. Mach. Learn. Res. 6, 2153–2175 (2005)

    MathSciNet  Google Scholar 

  6. Bach, F.: Sharp analysis of low-rank kernel matrix approximations. In: JMLR: Workshop and Conference Proceedings, vol. 30, pp. 1–25, May 2013

    Google Scholar 

  7. Zhang, K., Tsang, I.W., Kwok, J.T.: Improved Nystrom low-rank approximation and error analysis. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1232–1239. ACM (2008)

    Google Scholar 

  8. Gittens, A., Mahoney, M.W.: Revisiting the Nyström method for improved large-scale machine learning. J. Mach. Learn. Res. 17(1), 3977–4041 (2016)

    Google Scholar 

  9. Furrer, R., Genton, M.G., Nychka, D.: Covariance tapering for interpolation of large spatial datasets. J. Comput. Graph. Stat. 15(3), 502–523 (2006)

    Article  MathSciNet  Google Scholar 

  10. Kaufman, C.G., Schervish, M.J., Nychka, D.W.: Covariance tapering for likelihood-based estimation in large spatial data sets. J. Am. Stat. Assoc. 103(484), 1545–1555 (2008). Taylor & Francis

    Google Scholar 

  11. Stein, M.L., Chen, J., Anitescu, M., et al.: Stochastic approximation of score functions for Gaussian processes. Ann. Appl. Stat. 7(2), 1162–1191 (2013). Institute of Mathematical Statistics

    Google Scholar 

  12. Du, J., Zhang, H., Mandrekar, V.S.: Fixed-domain asymptotic properties of tapered maximum likelihood estimators. Ann. Stat. 37(6A), 3330–3361 (2009)

    Article  MathSciNet  Google Scholar 

  13. Stein, M.L., Chi, Z., Welty, L.J.: Approximating likelihoods for large spatial data sets. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 66(2), 275–296 (2004). Wiley

    Google Scholar 

  14. Eidsvik, J., Shaby, B.A., Reich, B.J., Wheeler, M., Niemi, J.: Estimation and prediction in spatial models with block composite likelihoods. J. Comput. Graph. Stat. 23(2), 295–315 (2014). Taylor & Francis

    Google Scholar 

  15. Datta, A., Banerjee, S., Finley, A.O., Gelfand, A.E.: Hierarchical nearest-neighbor gaussian process models for large geostatistical datasets. J. Am. Stat. Assoc. 111(514), 800–812 (2016)

    Article  MathSciNet  Google Scholar 

  16. Guinness, J.: Permutation and grou** methods for sharpening gaussian process approximations. Technometrics 60(4), 415–429 (2018)

    Article  MathSciNet  Google Scholar 

  17. Datta, A.: Sparse nearest neighbor Cholesky matrices in spatial statistics (2021). ar**v:2102.13299 [stat]

  18. Datta, A.: Nearest-neighbor sparse Cholesky matrices in spatial statistics. WIREs Comput. Stat. 14(5), e1574 (2022)

    Article  MathSciNet  Google Scholar 

  19. Zhang, H.: Spatial process approximations: assessing their necessity (2023). ar**v:2311.03201 [stat.ML]

  20. Braun, M.L.: Accurate error bounds for the eigenvalues of the kernel matrix. J. Mach. Learn. Res. 7(82), 2303–2328 (2006)

    MathSciNet  Google Scholar 

  21. Jia, L., Liao, S.: Accurate probabilistic error bound for eigenvalues of kernel matrix. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009. LNCS (LNAI), vol. 5828, pp. 162–175. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05224-8_14

    Chapter  Google Scholar 

  22. Vecchia, A.V.: Estimation and model identification for continuous spatial processes. J. Roy. Stat. Soc. B 50, 297–312 (1988)

    MathSciNet  Google Scholar 

  23. Golub, G.H., Loan, C.F.V.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2012)

    Google Scholar 

  24. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM) (1997)

    Google Scholar 

  25. O’Dowd, R.: Conditioning of coefficient matrices of ordinary kriging. Math. Geol. 23, 721–739 (1991)

    Article  MathSciNet  Google Scholar 

  26. McCourt, M., Fasshauer, G.E.: Stable likelihood computation for gaussian random fields. In: Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science: Novel Methods in Harmonic Analysis, vol. 2, pp. 917–943 (2017)

    Google Scholar 

  27. Basak, S., Petit, S., Bect, J., Vazquez, E.: Numerical issues in maximum likelihood parameter estimation for Gaussian process interpolation. In: Nicosia, G., et al. (eds.) LOD 2021. LNCS, vol. 13164, pp. 116–131. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-95470-3_9

  28. Zhang, H.: Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J. Am. Stat. Assoc. 99(465), 250–261 (2004)

    Article  MathSciNet  Google Scholar 

  29. Wang, D., Loh, W.L.: On fixed-domain asymptotics and covariance tapering in Gaussian random field models. Electron. J. Statist 5, 238–269 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, BY., Zhang, H. (2024). Large-Scale Data Challenges: Instability in Statistical Learning. In: Huang, DS., Premaratne, P., Yuan, C. (eds) Applied Intelligence. ICAI 2023. Communications in Computer and Information Science, vol 2015. Springer, Singapore. https://doi.org/10.1007/978-981-97-0827-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0827-7_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0826-0

  • Online ISBN: 978-981-97-0827-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation