Flow Boiling Enhancement via Cross-Sectional Expansion

  • Living reference work entry
  • First Online:
Handbook of Multiphase Flow Science and Technology
  • 279 Accesses

Abstract

Heat transfer enhancements available from expanding the cross section of a microchannel or microchannel system in flow boiling are presented, including recommendations appropriate for design and selection of expanding channel heat sinks. The principal relevant operating parameters of a boiling-channel heat sink are the attainable critical heat flux (CHF), which limits the practical heat flux permissible and the pressure drop across the channel, which may impose substantial pum** costs on the loop and is coupled to stability of flow in the channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • K. Balasubramanian, P.C. Lee, L. **, S. Chou, C. Teo, S. Gao, Experimental investigations of flow boiling heat transfer and pressure drop in straight and expanding microchannels. A comparative study. Int. J. Therm. Sci. 50(12), 2413–2421 (2011)

    Article  Google Scholar 

  • S. Basu, S. Ndao, G.J. Michna, Y. Peles, M.K. Jensen, Flow boiling of R134a in circular microtubes part II: study of critical heat flux condition. ASME J. Heat Transf. 133(5), 051503 (2011)

    Article  Google Scholar 

  • K. Chang, C. Pan, Two-phase flow instability for boiling in a microchannel heat sink. Int. J. Heat Mass Transf. 50(11), 2078–2088 (2007)

    Article  Google Scholar 

  • J. Hwang, F. Tseng, C. Pan, Ethanol−CO2 two-phase flow in diverging and converging microchannels. Int. J. Multiphase Flow 31(5), 548–570 (2005)

    Article  MATH  Google Scholar 

  • A. Kalani, S.G. Kandlikar, Evaluation of pressure drop performance during enhanced flow boiling in open microchannels with tapered manifolds. ASME J. Heat Transf. 136(5), 051502 (2014)

    Article  Google Scholar 

  • A. Kalani, S.G. Kandlikar, Effect of taper on pressure recovery during flow boiling in open microchannels with manifold using homogeneous flow model. Int. J. Heat Mass Transf. 83, 109–117 (2015a)

    Article  Google Scholar 

  • A. Kalani, S.G. Kandlikar, Flow patterns and heat transfer mechanisms during flow boiling over open microchannels in tapered manifold (OMM). Int. J. Heat Mass Transf. 89, 494–504 (2015b)

    Article  Google Scholar 

  • S.G. Kandlikar, Fundamental issues related to flow boiling in minichannels and microchannels. Exp. Thermal Fluid Sci. 26(2), 389–407 (2002)

    Article  Google Scholar 

  • S. Kandlikar, Heat transfer mechanisms during flow boiling in microchannels. ASME J. Heat Transf. 126(1), 8–16 (2004)

    Article  Google Scholar 

  • S.G. Kandlikar, Scale effects on flow boiling heat transfer in microchannels: a fundamental perspective. Int. J. Therm. Sci. 49(7), 1073–1085 (2010)

    Article  Google Scholar 

  • S.G. Kandlikar, History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review. ASME J. Heat Transf. 134(3), 034001–1–15 (2012)

    Article  Google Scholar 

  • S.G. Kandlikar, W.K. Kuan, D.A. Willistein, J. Borrelli, Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites. ASME J. Heat Transf. 128(4), 389–397 (2006)

    Article  Google Scholar 

  • S.G. Kandlikar, T. Widger, A. Kalani, V. Mejia, Enhanced flow boiling over open microchannels with uniform and tapered gap manifolds. ASME J. Heat Transf. 135(6), 061401 (2013)

    Article  Google Scholar 

  • Y. Katto, H. Ohno, An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes. Int. J. Heat Mass Transf. 27(9), 1641–1648 (1984)

    Article  Google Scholar 

  • A. KoÅŸar, Y. Peles, Critical heat flux of R-123 in silicon-based microchannels. ASME J. Heat Transf. 129(7), 844–851 (2007)

    Article  Google Scholar 

  • A. KoÅŸar, C.-J. Kuo, Y. Peles, Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors. ASME J. Heat Transf. 128(3), 251–260 (2006)

    Article  Google Scholar 

  • C.-J. Kuo, Y. Peles, Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities. ASME J. Heat Transf. 130(7), 72402 (2008)

    Article  Google Scholar 

  • G.M. Lazarek, S.H. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113. Int. J. Heat Mass Transf. 25(7), 945–960 (1982)

    Article  Google Scholar 

  • P.C. Lee, C. Pan, Boiling heat transfer and two-phase flow of water in a single shallow microchannel with a uniform or diverging cross section. J. Micromech. Microeng. 18(2), 025005–1–13 (2007)

    Google Scholar 

  • T.-L. Liu, B.-R. Fu, C. Pan, Boiling two-phase flow and efficiency of co and counter-current microchannel heat exchangers with gas heating. Int. J. Heat Mass Transf. 55(21–22), 6130–6141 (2012)

    Article  Google Scholar 

  • C.T. Lu, C. Pan, Stabilization of flow boiling in microchannel heat sinks with a diverging cross-section design. J. Micromech. Microeng. 18(7), 075035–1–13 (2008)

    Google Scholar 

  • C.T. Lu, C. Pan, A highly stable microchannel heat sink for convective boiling. J. Micromech. Microeng. 19(5), 055013–1–13 (2009)

    Article  Google Scholar 

  • C.T. Lu, C. Pan, Convective boiling in a parallel microchannel heat sink with a diverging cross section and artificial nucleation sites. Exp. Thermal Fluid Sci. 35(5), 810–815 (2011)

    Article  Google Scholar 

  • M.J. Miner, P.E. Phelan, Effect of cross-sectional perturbation on critical heat flux criteria in microchannels. ASME J. Heat Transf. 135(10), 101009 (2013)

    Article  Google Scholar 

  • M.J. Miner, B.A. Odom, C.A. Ortiz, J. Sherbeck, R. Prasher, P.E. Phelan, Optimized expanding microchannel geometry for flow boiling. ASME J. Heat Transf. 135(4), 042901 (2013a)

    Article  Google Scholar 

  • M.J. Miner, P.E. Phelan, C.A. Ortiz, B.A. Odom, Experimental measurements of critical heat flux in expanding microchannel arrays. ASME J. Heat Transf. 135(10), 101501 (2013b)

    Article  Google Scholar 

  • M.J. Miner, P.E. Phelan, C.A. Ortiz, B.A. Odom, Experimental measurements of pressure drop in expanding microchannel arrays. ASME J. Heat Transf. 136(3), 031502 (2014)

    Article  Google Scholar 

  • I. Mudawar, Two-phase microchannel heat sinks: theory, applications, and limitations. ASME J. Electron. Packag. 133(4), 041002 (2011)

    Article  Google Scholar 

  • A. Mukherjee, S.G. Kandlikar, The effect of inlet constriction on bubble growth during flow boiling in microchannels. Int. J. Heat Mass Transf. 52(21), 5204–5212 (2009)

    Article  MATH  Google Scholar 

  • B.A. Odom, M.J. Miner, C.A. Ortiz, J. Sherbeck, R. Prasher, P.E. Phelan, Microchannel two-phase flow oscillation control with an adjustable inlet orifice. ASME J. Heat Transf. 134(12), 122901 (2012)

    Article  Google Scholar 

  • S.L. Qi, P. Zhang, R.Z. Wang, L.X. Xu, Flow boiling of liquid nitrogen in micro-tubes: part II heat transfer characteristics and critical heat flux. Int. J. Heat Mass Transf. 50(25), 5017–5030 (2007)

    Article  MATH  Google Scholar 

  • W. Qu, I. Mudawar, Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks. Int. J. Heat Mass Transf. 47(10), 2045–2059 (2003)

    Google Scholar 

  • R. Revellin, J.R. Thome, Adiabatic two-phase frictional pressure drops in microchannels. Exp. Thermal Fluid Sci. 31(7), 673–685 (2007a)

    Article  Google Scholar 

  • R. Revellin, J.R. Thome, A theoretical model for the prediction of the critical heat flux in heated microchannels. Int. J. Heat Mass Transf. 51(5), 1216–1225 (2007b)

    MATH  Google Scholar 

  • A. Tamanna, P.S. Lee, Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink. Int. J. Heat Mass Transf. 82, 1–15 (2015a)

    Article  Google Scholar 

  • A. Tamanna, P.S. Lee, Flow boiling instability characteristics in expanding silicon microgap heat sink. Int. J. Heat Mass Transf. 89, 390–405 (2015b)

    Article  Google Scholar 

  • T. Zhang, T. Tong, J.-Y. Chang, Y. Peles, R. Prasher, M.K. Jensen, J.T. Wen, P.E. Phelan, Ledinegg instability in microchannels. Int. J. Heat Mass Transf. 52(25), 5661–5674 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Office of Naval Research for funding and support. This work was partially supported by the Office of Naval Research as a MURI award (prime award number N00014-07-1-0723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Phelan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Phelan, P., Miner, M. (2016). Flow Boiling Enhancement via Cross-Sectional Expansion. In: Yeoh, G. (eds) Handbook of Multiphase Flow Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4585-86-6_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-86-6_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-86-6

  • Online ISBN: 978-981-4585-86-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation