Targeting Molecular and Cellular Mechanisms in Idiopathic Pulmonary Fibrosis

  • Chapter
  • First Online:
Targeting Cellular Signalling Pathways in Lung Diseases

Abstract

Idiopathic pulmonary fibrosis (IPF) is a persistent and an aggravating interstitial alveolar disease, marked by thickening and scarring of the lung parenchyma with unknown etiology leading to early death among the elderly population worldwide. The vast knowledge on the understanding of the pathogenesis, diagnosis, and therapeutic management has been raised significantly in recent years to delay the progression of IPF. Currently, nintedanib and pirfenidone are two medications used to treat IPF which significantly restores the alveolar epithelial functions; however, it is associated with a few demerits. Thus, new approaches are needed to overcome hurdles raised from IPF pathogenesis. Up-to-date approaches in pulmonary rehabilitation, non-pharmacological strategies, lung transplantation, and comorbidity management are mainly involved in subsiding the symptoms and thereby attempt to improve patient’s health outcomes. Hence clinical trial studies are in search of novel molecular and cellular targets to overcome IPF. This chapter highlights the understanding of up-to-date molecular and cellular targets and potential approaches which will create an avenue to design and develop novel therapeutics to defend against this complex and injurious disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Selman M, King TE, Pardo A (2001) Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 134:136–151

    Article  CAS  PubMed  Google Scholar 

  2. Wolters PJ, Blackwell TS, Eickelberg O, Loyd JE, Kaminski N et al (2018) Time for a change: Is idiopathic pulmonary fibrosis still idiopathic and only fibrotic? Lancet Respir Med 6:154–160

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jenskin G (2020) Demystifying pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 319:L554–L559

    Article  CAS  Google Scholar 

  4. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824

    Article  PubMed  PubMed Central  Google Scholar 

  5. Iwata T, Yoshida S, Nagato K, Nakajima T, Suzuki H et al (2015) Experience with perioperative pirfenidone for lung cancer surgery in patients with idiopathic pulmonary fibrosis. Surg Today 45:1263–1270

    Article  PubMed  Google Scholar 

  6. Iwata T, Yoshida S, Fujiwara T, Wada H, Nakajima T (2016) Effect of perioperative Pirfenidone treatment in lung cancer patients with idiopathic pulmonary fibrosis. Ann Thorac Surg 102:1905–1910

    Article  PubMed  Google Scholar 

  7. Karampitsakos T, Tzilas V, Tringidou R, Steiropoulos P, Aidinis V et al (2017) Lung cancer in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 45:1–10

    Article  CAS  PubMed  Google Scholar 

  8. Goto T (2018) Measuring surgery outcomes of lung Cancer patients with concomitant pulmonary fibrosis: a review of the literature. Cancers 10:223

    Article  PubMed Central  Google Scholar 

  9. Daniels CE, Jett JR (2005) Does interstitial lung disease predispose to lung cancer? Curr Opin Pulm Med 11:431–437

    Article  PubMed  Google Scholar 

  10. Hendriks LE, Drent M, van Haren EH, Verschakelen JA, Verleden GM (2012) Lung cancer in idiopathic pulmonary fibrosis patients diagnosed during or after lung transplantation. Respir Med Case Rep 5:37–39

    CAS  PubMed  PubMed Central  Google Scholar 

  11. King TE Jr, Schwarz MI, Brown K, Tooze JA, Colby TV et al (2001) Idiopathic pulmonary fibrosis: relationship between histopathologic features and mortality. Am J Respir Crit Care Med 164:1025–1032

    Article  PubMed  Google Scholar 

  12. Cha SI, Chang CS, Kim EK, Lee JW, Matthay MA et al (2012) Lung mast cell density defines a subpopulation of patients with idiopathic pulmonary fibrosis. Histopathology 61:98–106

    Article  PubMed  PubMed Central  Google Scholar 

  13. Noth I, Zhang Y, Ma SF, Flores C, Barber M et al (2013) Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Resp Med 1:309–317

    Article  CAS  Google Scholar 

  14. Prasse A, Probst C, Bargagli E, Zissel G, Toews GB et al (2009) Serum CC-chemokine ligand 18 concentration predicts outcome in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 179:717–723

    Article  CAS  PubMed  Google Scholar 

  15. Rosas IO, Richards TJ, Konishi K, Zhang Y, Gibson K et al (2008) MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med 5:e93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wolters PJ, Collard HR, Jones KD (2014) Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol 9:157–179

    Article  CAS  PubMed  Google Scholar 

  17. Ley B, Collard HR (2013) Epidemiology of idiopathic pulmonary fibrosis. Clin Epidemiol 5:483–492

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hoffman TW, van Moorsel CHM, Borie R, Crestani B (2018) Pulmonary phenotypes associated with genetic variation in telomere-related genes. Curr Opin Pulm Med 24:269–280

    Article  CAS  PubMed  Google Scholar 

  19. Cunningham PS, Meijer P, Nazgiewicz A, Anderson SG, Borthwick LA et al (2020) The circadian clock protein REVERBα inhibits pulmonary fibrosis development. Proc Natl Acad Sci U S A 117:1139–1147

    Article  CAS  PubMed  Google Scholar 

  20. Takezaki A, Tsukumo S, Setoguchi Y, Ledford JG, Goto H et al (2019) A homozygous SFTPA1 mutation drives necroptosis of type II alveolar epithelial cells in patients with idiopathic pulmonary fibrosis. J Exp Med 216:2724–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meltzer EB, Noble P (2008) Idiopathic pulmonary fibrosis. Orphanet J Rare Dis 3:3–8

    Article  Google Scholar 

  22. Cuddapah S, Barski A, Zhao K (2010) Epigenomics of T cell activation, differentiation, and memory. Curr Opin Immunol 22:341–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11:384–400

    Article  CAS  PubMed  Google Scholar 

  24. Rivera CM, Ren B (2013) Map** human epigenomes. Cell 155:39–55

    Article  CAS  PubMed  Google Scholar 

  25. Li H, Zhao X, Shan H, Liang H (2016) MicroRNAs in idiopathic pulmonary fibrosis: involvement in pathogenesis and potential use in diagnosis and therapeutics. Acta Pharm Sin B 6:531–539

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kidd C, Hayden BY (2015) The psychology and neuroscience of curiosity Celeste. Neuron 88:449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Helling BA, Yang IV (2015) Epigenetics in lung fibrosis: from pathobiology to treatment perspective. Curr Opin Pulm Med 21:454–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Keane MP, Strieter RM (2002) The importance of balanced pro-inflammatory and anti-inflammatory mechanisms in diffuse lung disease. Respir Res 3:5

    Article  PubMed  Google Scholar 

  29. Telugu AN, Chen H, Weng T, Bhaskaran M, ** N et al (2006) Expression profile of IGF system during lung injury and recovery in rats exposed to hyperoxia: a possible role of IGF-1 in alveolar epithelial cell proliferation and differentiation. Cell Biochem 97:984–998

    Article  CAS  Google Scholar 

  30. Camelo A, Dunmore R, Sleeman MA, Clarke DL (2013) The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Front Pharmacol 4:173

    Google Scholar 

  31. Souto JT, Aliberti JC, Campanelli AP, Livonesi MC, Maffei CML et al (2003) Chemokine production and leukocyte recruitment to the lungs of Paracoccidioides brasiliensis-infected mice is modulated by interferon-γ. Am J Pathol 163:583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Linthout SV, Miteva K, Tschöpe C (2014) Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res 102:258–269

    Article  PubMed  CAS  Google Scholar 

  33. Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J (2001) Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest 107:1529–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Genersch E, Hayess K, Neuenfeld Y, Haller H (2000) Sustained ERK phosphorylation is necessary but not sufficient for MMP-9 regulation in endothelial cells: involvement of Ras-dependent and -independent pathways. J Cell Sci 113:4319–4330

    Article  CAS  PubMed  Google Scholar 

  35. Sime PJ, Marr RA, Gauldie D, **ng Z, Hewlett BR (1998) Transfer of tumor necrosis factor-alpha to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factorbeta1 and myofibroblasts. Am J Pathol 153:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hyldgaard C, Hilberg O, Bendstrup E (2014) How does comorbidity influence survival in idiopathic pulmonary fibrosis? Respir Med 108:647–653

    Article  PubMed  Google Scholar 

  37. Kreuter M, Ehlers-Tenenbaum S, Palmowski K, Bruhwyler J, Oltmanns U et al (2016) Impact of comorbidities on mortality in patients with idiopathic pulmonary fibrosis. PLoS One 11:151425

    Article  CAS  Google Scholar 

  38. Tsakiri KD, Cronkhite JT, Kuan PJ, **ng C, Raghu G et al (2007) Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci U S A 104:7552–7557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vancheri C, Failla M, Crimi N, Raghu G (2010) Idiopathic pulmonary fibrosis: a disease with similarities and links to cancer biology. Eur Respir J 35:496–504

    Article  CAS  PubMed  Google Scholar 

  40. Raghu G (2003) The role of gastroesophageal reflux in idiopathic pulmonary fibrosis. Am J Med 115:60–64

    Article  Google Scholar 

  41. Antonio GE, Wong KT, Hui DS, Wu A, Lee N et al (2003) Thin-section CT in patients with severe acute respiratory syndrome following hospital discharge: preliminary experience. Radiology 228:810–815

    Article  PubMed  Google Scholar 

  42. Hui DS, Joynt GM, Wong KT, Gomersall CD, Li TS et al (2005) Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors. Thorax 60:401–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barkauskas CE, Noble PW (2014) Cellular mechanisms of tissue fibrosis. New insights into the cellular mechanisms of pulmonary fibrosis. Am J Physiol Cell Physiol 306:C987–C996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208:1339–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kropski JA, Blackwell TS (2019) Progress in understanding and treating idiopathic pulmonary fibrosis. Annu Rev Med 70:211–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yanagihara T, Sato S, Upagupta C, Kolb M (2019) What have we learned from basic science studies on idiopathic pulmonary fibrosis? Eur Respir Rev 28:190029

    Article  PubMed  Google Scholar 

  47. Selman M, Pardo A (2014) Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. An integral model. Am J Respir Crit Care Med 189:1161–1172

    Article  CAS  PubMed  Google Scholar 

  48. Lehmann M, Korfei M, Mutze K, Klee S, Skronska-Wasek W et al (2017) Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur Respir J 50:1602367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G et al (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8:14532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H et al (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Won-park D et al (2018) Metformin reverses established lung fibrosis in a bleomycin model. Nat Med 24:1121–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sato N, Takasaka N, Yoshida M, Tsubouchi K, Minagawa S et al (2016) Metformin attenuates lung fibrosis development via NOX4 suppression. Respir Res 17:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Xu Y, Mizuno T, Sridharan A, Du Y, Guo M et al (2016) Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 1:e90558

    Article  PubMed  PubMed Central  Google Scholar 

  54. Horan GS, Wood S, Ona V, Li DJ, Lukashev ME et al (2008) Partial inhibition of integrin alpha (v) beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med 177:56–65

    Article  CAS  PubMed  Google Scholar 

  55. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL et al (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–328

    Article  CAS  PubMed  Google Scholar 

  56. Cosgrove GP, Brown KK, Schiemann WP, Serls AE, Parr JE et al (2004) Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. Am J Respir Crit Care Med 170:242–251

    Article  PubMed  Google Scholar 

  57. Kotani I, Sato A, Hayakawa H, Urano T, Takado Y et al (1995) Increased procoagulant and antifibrinolytic activities in the lungs with idiopathic pulmonary fibrosis. Thromb Res 77:493–504

    Article  CAS  PubMed  Google Scholar 

  58. Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG et al (2006) Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A 103:13180–13185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED et al (2005) Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol 166:1321–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342:1234850

    Article  PubMed  CAS  Google Scholar 

  61. Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ (2018) Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 359:1118–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Peng T, Frank DB, Kadzik RS, Morley MP, Rathi KS et al (2015) Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature 526:578–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsao PN, Matsuoka C, Wei SC, Sato A, Sato S, Hasegawa K et al (2016) Epithelial notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity. Proc Natl Acad Sci U S A 113:8242–8247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu K, Nieuwenhuis E, Cohen BL, Wang W, Canty AG et al (2010) Lunatic fringe-mediated notch signaling is required for lung alveogenesis. Am J Physiol Lung Cell Mol Physiol 298:L45–L56

    Article  CAS  PubMed  Google Scholar 

  65. Selman M, Pardo A (2019) The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cell Signal 66:109482

    Article  PubMed  CAS  Google Scholar 

  66. Bueno M, Zank D, Buendia-Roldan I, Fiedler K, Mays BG et al (2019) PINK1 attenuates mtDNA release in alveolar epithelial cells and TLR9 mediated profibrotic responses. PLoS One 14:e0218003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Raredon MSB, Adams TS, Suhail Y, Schupp JC, Poli S et al (2019) Single-cell connectomic analysis of adult mammalian lungs. Sci Adv 5:3851

    Article  CAS  Google Scholar 

  68. Wang C, Cassandras M, Peng T (2019) The role of hedgehog signaling in adult lung regeneration and maintenance. J Dev Biol 7:14

    Article  PubMed Central  CAS  Google Scholar 

  69. Hu B, Liu J, Wu Z, Liu T, Ullenbruch MR et al (2015) Reemergence of hedgehog mediates epithelial-mesenchymal crosstalk in pulmonary fibrosis. Am J Respir Cell Mol Biol 52:418–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moore BB, Peters-Golden M, Christensen PJ, Lama V, Kuziel WA et al (2003) Alveolar epithelial cell inhibition of fibroblast proliferation is regulated by MCP-1/CCR2 and mediated by PGE2. Am J Physiol Lung Cell Mol Physiol 284:L342–L349

    Article  CAS  PubMed  Google Scholar 

  71. Tan Q, Ma XY, Liu W, tal MJA e (2019) Nascent lung organoids reveal epithelium- and Bone morphogenetic protein-mediated suppression of fibroblast activation. Am J Respir Cell Mol Biol 61:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiang C, Huang H, Liu J, Wang Y, Lu Z et al (2012) Fasudil, a rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int J Mol Sci 13:8293–8307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bei Y, Hua-Huy T, Duong-Quy S, Nguyen V, Chen W et al (2013) Long-term treatment with fasudil improves bleomycin-induced pulmonary fibrosis and pulmonary hypertension via inhibition of Smad2/3 phosphorylation. Pulm Pharmacol Ther 26:635–643

    Article  CAS  PubMed  Google Scholar 

  74. Knipe RS, Probst CK, Lagares D, Franklin A, Spinney J et al (2018) The rho kinase isoforms ROCK1 and ROCK2 each contribute to the development of experimental pulmonary fibrosis. Am J Respir Cell Mol Biol 58:471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barry-Hamilton V, Spangler R, Marshall D, McCauley S, Rodiguez HM et al (2010) Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 16:1009–1017

    Article  CAS  PubMed  Google Scholar 

  76. Gokey JJ, Sridharan A, Xu Y, Green J, Carraro G et al (2018) Active epithelial Hippo signaling in idiopathic pulmonary fibrosis. JCI Insight 3:e98738

    Article  PubMed Central  Google Scholar 

  77. Axell-House VYDB, Zhang Z, Burdick MD, Strieter RM, Mehrad B (2018) Fibrocytes in pulmonary fibrosis: double-blind placebo-controlled crossover pilot study of Sirolimus in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 197:A4353

    Google Scholar 

  78. Peter E, Huber SB, Peter P, Alexandra T, Ute W et al (2010) Reversal of established fibrosis by treatment with the anti-CTGF monoclonal antibody FG-3019 in a murine model of radiation-induced pulmonary fibrosis. Am J Respir Crit Care Med 181:A1054

    Google Scholar 

  79. Raghu G, Scholand MB, de Andrade J, Lancaster L, Mageto Y et al (2016) FG-3019 anti-connective tissue growth factor monoclonal antibody: results of an open-label clinical trial in idiopathic pulmonary fibrosis. Eur Respir J 47:1481–1491

    Article  PubMed  Google Scholar 

  80. Melboucy-Belkhir S, Pradere P, Tadbiri S, Habib S, Baccrat A et al (2014) Forkhead box F1 represses cell growth and inhibits COL1 and ARPC2 expression in lung fibroblasts in vitro. Am J Physiol Lung Cell Mol Physiol 307:L838–L847

    Article  CAS  PubMed  Google Scholar 

  81. Shi M, Shu J, Wang R, Chen X, Mi L et al (2011) Latent TGF-beta structure and activation. Nature 474:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD et al (2013) Targeting of alpha integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19:1617–1624

    Article  CAS  PubMed  Google Scholar 

  83. Tager AM, LaCamera P, Shea BS, Campanella GS, Selman M et al (2008) The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med 14:45–54

    Article  CAS  PubMed  Google Scholar 

  84. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP (1999) Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 103:779–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Belperio JA, Dy M, Burdick MD, Xue YY, Li K et al (2002) Interaction of IL-13 and C10 in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 27:419–427

    Article  CAS  PubMed  Google Scholar 

  86. Murray LA, Zhang H, Oak SR, Coelho AL, Herath A et al (2014) Targeting interleukin-13 with tralokinumab attenuates lung fibrosis and epithelial damage in a humanized SCID idiopathic pulmonary fibrosis model. Am J Respir Cell Mol Biol 50:985–994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Saito S, Zhuang Y, Shan B, Danchuk S et al (2017) Tubastatin ameliorates pulmonary fibrosis by targeting the TGFβ-PI3K-Akt pathway. PLoS One 12:e0186615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Sellares J, Veraldi KL, Thiel KJ et al (2019) Intracellular heat shock protein 70 deficiency in pulmonary fibrosis. Am J Respir Cell Mol Biol 60:629–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Agarwal SK (2014) Integrins and cadherins as therapeutic targets in fibrosis. Front Pharmacol 5:1–7

    Article  CAS  Google Scholar 

  90. Annes JP, Chen Y, Munger JS, Rifkin DB (2004) Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. J Cell Biol 165:723–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Morris DG, Huang X, Kaminski N, Wang Y, Shapiro SD et al (2003) Loss of integrin alpha (v) beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema. Nature 422:169–173

    Article  CAS  PubMed  Google Scholar 

  92. Craig VJ, Zhang L, Hagood JS, Owen CA (2015) Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 53:585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kolb C, Mauch S, Peter HH, Krawinkel U, Sedlacek R (1997) The matrix metalloproteinase RASI-1 is expressed in synovial blood vessels of a rheumatoid arthritis patient. Immunol Lett 57:83–88

    Article  CAS  PubMed  Google Scholar 

  94. Sadowski T, Dietrich S, Koschinsky F, Ludwig A, Proksch E et al (2005) Matrix metalloproteinase 19 processes the laminin 5 gamma 2 chain and induces epithelial cell migration. Cell Mol Life Sci 62:870–880

    Article  CAS  PubMed  Google Scholar 

  95. Carey WA, Taylor GD, Dean WB, Bristow JD (2010) Tenascin-C deficiency attenuates TGF-s mediated fibrosis following murine lung injury. Am J Physiol Lung Cell Mol Physiol 299:L785–L793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jara P, Calyeca J, Romero Y, Placido L, Yu G et al (2015) Matrix metalloproteinase (MMP)-19-deficient fibroblasts display a profibrotic phenotype. Am J Physiol Lung Cell Mol Physiol 308:L511–L522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yu G, Kovkarova-Naumovski E, Jara P, Parwani A, Kass D et al (2012) Matrix metalloproteinase-19 is a key regulator of lung fibrosis in mice and humans. Am J Respir Crit Care Med 186:752–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Smith WL, Langenbach R (2001) Why there are two cyclooxygenase isozymes. J Clin Invest 107:1491–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. White ES, Atrasz RG, Dickie EG, Aronoff DM, Stambolic V, Mak TW (2005) Prostaglandin E(2) inhibits fibroblast migration by E-prostanoid 2 receptor-mediated increase in PTEN activity. Am J Respir Cell Mol Biol 32:135–141

    Article  CAS  PubMed  Google Scholar 

  100. Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  CAS  PubMed  Google Scholar 

  101. Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane. J Biol Chem 273:5419–5422

    Article  CAS  PubMed  Google Scholar 

  102. Labrecque L, Royal I, Surprenant DS, Patterson C, Gingras D, Beliveau R (2003) Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell 14:334–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang XM, Zhang Y, Kim HP, Zhou Z, Feghali-Bostwick CA et al (2006) Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med 203:2895–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shivshankar P, Brampton C, Miyasato S, Kasper M, Thannickal VJ et al (2012) Caveolin- 1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice. Am J Respir Cell Mol Biol 47:28–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Marudamuthu AS, Bhandary YP, Fan L, Radhakrishnan V, MacKenzie B et al (2019) Caveolin-1–derived peptide limits development of pulmonary fibrosis. Caveolin-1–derived peptide limits development of pulmonary fibrosis. Sci Transl Med 11:2848

    Article  CAS  Google Scholar 

  106. Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL (2003) Semaphorin 7A promotes axonoutgrowth through integrins and MAPKs. Nature 424:398–405

    Article  PubMed  CAS  Google Scholar 

  107. Kang HR, Lee CG, Homer RJ, Elias JA (2007) Semaphorin 7A plays a critical role in TGF-beta1-induced pulmonary fibrosis. J Exp Med 204:1083–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Reilkoff RA, Peng H, Murray LA, Peng X, Russell T et al (2013) Semaphorin 7a+ regulatory T cells are associated with progressive idiopathic pulmonary fibrosis and are implicated in transforming growth factor-beta1-induced pulmonary fibrosis. Am J Respir Crit Care Med 187:180–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Roach KM, Duffy SM, Coward W, Feghali-Bostwick C, Wulff H (2013) The K+channel KCa3.1 as a novel target for idiopathic pulmonary fibrosis. PLoS One 8:e85244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Roach KM, Wulff H, Feghali-Bostwick C, Amrani Y, Bradding P (2014) Increased constitutive alphaSMA and Smad2/3 expression in idiopathic pulmonary fibrosis myofibroblasts is KCa3.1- dependent. Respir Res 15:155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Roach KM, Feghali-Bostwick C, Wulff H, Amrani Y, Bradding P (2015) Human lung myofibroblast TGFbeta1-dependent Smad2/3 signalling is ca(2+)-dependent and regulated by KCa3.1 K(+) channels. Fibrogenesis Tissue Repair 8:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Liang H, Xu C, Pan Z, Zhang Y, Xu Z et al (2014) The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis. Mol Ther J Am Soc Gene Ther 22:1122–1133

    Article  CAS  Google Scholar 

  113. Pandit KV, Milosevic J (2015) MicroRNA regulatory networks in idiopathic pulmonary fibrosis. Biochem Cell Biol 93:129–137

    Article  CAS  PubMed  Google Scholar 

  114. Pandit KV, Milosevic J, Kaminski N (2011) MicroRNAs in idiopathic pulmonary fibrosis. Transl Res J Clin Med 157:191–199

    CAS  Google Scholar 

  115. Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A et al (2010) Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 182:220–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  CAS  PubMed  Google Scholar 

  117. Olsen KC, Sapinoro RE, Kottmann RM, Kulkarni AA, Iismaa SE et al (2011) Transglutaminase 2 and its role in pulmonary fibrosis. Am J Respir Crit Care Med 184:699–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Akimov SS, Belkin AM (2001) Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin: a role in TGF beta-dependent matrix deposition. J Cell Sci 114:2989–3000

    Article  CAS  PubMed  Google Scholar 

  119. Spagnolo P, Wells AU, Collard HR (2015) Pharmacological treatment of idiopathic pulmonary fibrosis: an update. Drug Discov Today 20:514–524

    Article  CAS  PubMed  Google Scholar 

  120. du Bois RM (2010) Strategies for treating idiopathic pulmonary fibrosis. Nat Rev Drug Discov 9:129–140

    Article  PubMed  CAS  Google Scholar 

  121. Taniguchi H, Ebina M, Kondoh Y, Ogura T, Azuma A et al (2010) Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J 35:821–829

    Article  CAS  PubMed  Google Scholar 

  122. King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092

    Article  PubMed  CAS  Google Scholar 

  123. Hilberg F, Roth GJ, Krssak M, Kautschitsch S, Sommergruber W et al (2008) BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res 68:4774–4782

    Article  CAS  PubMed  Google Scholar 

  124. Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370:2071–2082

    Article  PubMed  CAS  Google Scholar 

  125. Spagnolo P, Rossi G, Cavazza A (2014) Pathogenesis of idiopathic pulmonary fibrosis and its clinical implications. Expert Rev Clin Immunol 10:1005–1017

    Article  CAS  PubMed  Google Scholar 

  126. Caminati A, Lonati C, Cassandro R, Elia D, Pelosi G, Torre O, Zompatori M, Uslenghi E, Harari S (2019) Comorbidities in idiopathic pulmonary fibrosis: an underestimated issue. Eur Respir Rev 28:190044

    Article  PubMed  Google Scholar 

  127. Alsafadi HN, Staab-Weijnitz CA, Lehmann M, Lindner M, Peschel B et al (2017) An ex vivo model to induce early fibrosis-like changes in human precision-cut lung slices. Am J Physiol Lung Cell Mol Physiol 312:L896–L902

    Article  PubMed  Google Scholar 

  128. Konar D, Devarasetty M, Yildiz DV, Atala A, Murphy SV (2016) Lung-on-a-chip technologies for disease modeling and drug development. Biomed Eng Comput Biol 7:17–27

    PubMed  PubMed Central  Google Scholar 

  129. Tamò L, Hibaoui Y, Kallol S, Alves MP, Albrecht C et al (2018) Generation of an alveolar epithelial type II cell line from induced pluripotent stem cells. Am J Physiol Lung Cell Mol Physiol 315:L921–L932

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported in part by TRR fund, SASTRA Deemed-to-be University, Thanjavur, Tamilnadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banudevi Sivanantham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sivanantham, B., Bose, V. (2021). Targeting Molecular and Cellular Mechanisms in Idiopathic Pulmonary Fibrosis. In: Dua, K., Löbenberg, R., Malheiros Luzo, Â.C., Shukla, S., Satija, S. (eds) Targeting Cellular Signalling Pathways in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6827-9_12

Download citation

Publish with us

Policies and ethics

Navigation