Comparative Analysis and Prediction of Ecological Quality of Delhi

  • Conference paper
  • First Online:
Advances in Energy and Environment

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 142))

  • 301 Accesses

Abstract

This study showcases the comparison of ecological quality in Delhi and also predicts the environmental quality in coming future if the anthropogenic activities continue to remain the same. A pilot study was conducted by using the remotely sensed data to develop a Geospatial Ecological Impact Index (GEII), by implementing Analytical Hierarchy Process (AHP) which incorporated vegetation, moisture content, land surface temperature, water bodies, and built-up factors of the study area to examine how much they have impacted the ecology and in what manner. The ecological changes were contrasted between the years 2016 and 2020. It was revealed through this study that the overall ecological quality has decreased over the years with an increase in the mean LST. A simulated map was also developed using the nonlinear modelling technique, i.e. artificial neural network (ANN) to ascertain the future ecological quality for the year 2024. Certainly, this study can help decision makers, urban planners, and researchers in formulating new ways to mitigate and overcome the continuous degradation of ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Niyogi D et al (2018) The impact of land cover and land use change on the Indian monsoon region hydroclimate. pp 553–575. https://doi.org/10.1007/978-3-319-67474-2_25

  2. Angel S, Parent J, Civco D (2007) Urban sprawl metrics: An analysis of global urban expansion using GIS. In: American society for photogrammetry and remote sensing—ASPRS annual conference 2007: identifying geospatial solutions, vol 1, pp 22–33

    Google Scholar 

  3. Sinha RK, Sharma A (2006) Landscape level disturbance gradient analysis in Daltonganj south forest division. J Indian Soc Remote Sens 34(3):233–243. https://doi.org/10.1007/BF02990652

    Article  Google Scholar 

  4. Guo H, Zhang B, Bai Y, He X (2017) Ecological environment assessment based on remote sensing in Zhengzhou. In: IOP conference series earth environment science, vol 94(1). https://doi.org/10.1088/1755-1315/94/1/012190

  5. Trivedi RK, Chourasia LP, Singh DK (2006) Application of remote sensing in the study of geo-environmental aspects of Rajghat DAM project. J Indian Soc Remote Sens 34(3):309–317. https://doi.org/10.1007/BF02990659

    Article  Google Scholar 

  6. Tang UW, Wang ZS (2007) Influences of urban forms on traffic-induced noise and air pollution: results from a modelling system. Environ Model Softw 22(12):1750–1764. https://doi.org/10.1016/j.envsoft.2007.02.003

    Article  Google Scholar 

  7. Nikolakopoulos KG, Vaiopoulos DA, Skianis GA (2007) Use of multitemporal remote sensing data for map** the Alfios River network changes from 1977 to 2000. Geocarto Int 22(4):251–271. https://doi.org/10.1080/10106040701204727

    Article  Google Scholar 

  8. Kunwar P, Kachhwaha TS (2003) Spatial distribution of area affected by forest fire in Uttaranchal using remote sensing and GIS techniques. J Indian Soc Remote Sens 31(3):145–148. https://doi.org/10.1007/BF03030821

    Article  Google Scholar 

  9. Dwivedi RS, Sreenivas K, Ramana KV, Sujatha G, Sharma KL (2006) Delineation of lands affected by Tanneries’ Effluents: a remote sensing and GIS approach. J Indian Soc Remote Sens 34(1):95–100. https://doi.org/10.1007/BF02990751

    Article  Google Scholar 

  10. Goyal VC, Jain SK, Pareek N (2005) Water logging and drainage assessment in Ravi-Tawi Irrigation command (J&K) using remote sensing approach. J Indian Soc Remote Sens. 33(1):7–15. https://doi.org/10.1007/BF02989986

    Article  Google Scholar 

  11. Dwivedi RS, Ramana KV, Sreenivas K (2007) Temporal behavior of surface waterlogged areas using spaceborne multispectral multitemporal measurements. J Indian Soc Remote Sens 35(2):173–184. https://doi.org/10.1007/BF02990781

    Article  Google Scholar 

  12. Rout DK, Parida PK, Behera G (2005) Man-made disaster-a case study of NALCO Ash-pond in the Angul district, Orissa using remote sensing and GIS technique. J Indian Soc Remote Sens 33(2):291–295. https://doi.org/10.1007/BF02990048

    Article  Google Scholar 

  13. Kunwar TS, Kachhwaha P, Assessment soil erosion hazard through remote sensing and GIS technique in Kuthlar Gad Sub-watershed, Almora District, Uttar Pradesh, pp 212–215

    Google Scholar 

  14. de Asis AM, Omasa K (2007) Estimation of vegetation parameter for modeling soil erosion using linear spectral mixture analysis of landsat ETM data. ISPRS J Photogram Remote Sens 62(4):309–324. https://doi.org/10.1016/j.isprsjprs.2007.05.013

    Article  Google Scholar 

  15. Das JD, Dutta T, Saraf AK (2007) Remote sensing and GIS application in change detection of the Barak River channel, N.E. India. J Indian Soc Remote Sens 35(4):301–312. https://doi.org/10.1007/BF02990786

    Article  Google Scholar 

  16. Durbude DG, Purandara BK (2005) Assessment of sedimentation in the Linganmakki reservoir using remote sensing. J Indian Soc Remote Sens 33(4):503–509. https://doi.org/10.1007/BF02990735

    Article  Google Scholar 

  17. Rathore DS, Choudhary A, Agarwal PK (2006) Assessment of sedimentation in Harakud reservoir using digital remote sensing technique. J Indian Soc Remote Sens 34(4):377–383. https://doi.org/10.1007/BF02990922

    Article  Google Scholar 

  18. Ochoa-Gaona S, Kampichler C, de Jong BHJ, Hernndez S, Geissen V, Huerta E (2010) A multi- criterion index for the evaluation of local tropical forest conditions in Mexico. For. Ecol. Manage. 260(5):618–627. https://doi.org/10.1016/j.foreco.2010.05.018

    Article  Google Scholar 

  19. Xu H, Wen X, Ding F (2009) Urban expansion and heat island dynamics in the Quanzhou region, China. IEEE J Sel Top Appl Earth Obs Remote Sens 2(2):74–79. https://doi.org/10.1109/JSTARS.2009.2023088

  20. Chen A, Sun R, Chen L Studies on urban heat island from a landscape pattern view: a review. Shengtai Xuebao/Acta Ecol Sin 32(14):4553–4565. https://doi.org/10.5846/stxb201106280965

  21. Wen XL, Xu H-Q, Remote sensing analysis of impact of Fuzhou city expansion on water quality of Lower Minjiang River, China. Sci Geogr Sin 30(4):624–629

    Google Scholar 

  22. Xu H (2013) “Remote sensing evaluation index of regional ecological environment change. Chinese Environ Sci

    Google Scholar 

  23. Somvanshi SS, Kunwar P, Tomar S, Singh M (2018) Comparative statistical analysis of the quality of image enhancement techniques. Int J. Image Data Fusion 9(2):131–151. https://doi.org/10.1080/19479832.2017.1355336

    Article  Google Scholar 

  24. Zhang Z, He G (2013) Generation of Landsat surface temperature product for China, 2000–2010. Int J Remote Sens 34(20):7369–7375. https://doi.org/10.1080/01431161.2013.820368

    Article  Google Scholar 

  25. Weng Q, Fu P (2014) Modeling annual parameters of clear-sky land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data. Remote Sens Environ 140:267–278. https://doi.org/10.1016/j.rse.2013.09.002

    Article  Google Scholar 

  26. Weng Q, Fu P, Gao F (2014) Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens Environ. 145:55–67. https://doi.org/10.1016/j.rse.2014.02.003

    Article  Google Scholar 

  27. Roy DP et al (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172

    Google Scholar 

  28. Huang C, Goward SN, Masek JG, Thomas N, Zhu Z, Vogelmann JE (2010) An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens Environ 114(1):183–198. https://doi.org/10.1016/j.rse.2009.08.017

    Article  Google Scholar 

  29. Girard M-C, Girard C (2003) Processing of remote sensing data. CRC Press Taylor Fr. Gr., p 508

    Google Scholar 

  30. Rogers AS, Kearney MS (2004) Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices. Int J Remote Sens 25(12):2317–2335. https://doi.org/10.1080/01431160310001618103

    Article  Google Scholar 

  31. He C, Shi P, **e D, Zhao Y (2010) Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sens Lett 1(4):213–221. https://doi.org/10.1080/01431161.2010.481681

    Article  Google Scholar 

  32. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically map** urban areas from TM imagery. Int J Remote Sens 24(3):583–594. https://doi.org/10.1080/01431160304987

    Article  Google Scholar 

  33. Sukrisyanti (2007) Evaluasi Indeks Urban Pada Citra Landsat Multitemporal Dalam Ekstraksi Kepadatan Bangunan. J Ris Geol dan Pertamb 17(1):1. https://doi.org/10.14203/risetgeotam2007.v17.153

  34. Ruíz AAB (2015) Measuring vegetation. NASA Earth Observat 3(2):54–67

    Google Scholar 

  35. Zubair S, UlWafa B, Somvanshi SS, Kumari M, Comparative analysis of different satellite based water indices for the assessment of water bodies. In: National conference on recent trends in environmental pollution & disaster risk reduction

    Google Scholar 

  36. Li F, Chang Q, Shen J (2015) Ecological environment of the loess plateau gully areas of remote sensing dynamic monitoring. Taking Shaanxi Province as an example in. Chinese J Appl Ecol 3811–3817

    Google Scholar 

  37. Li H et al Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China. Remote Sens Environ 142:111–121. https://doi.org/10.1016/j.rse.2013.11.014

  38. Liu F (2012) Retrieval of surface temperature by remote sensing

    Google Scholar 

  39. Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281. https://doi.org/10.1016/0022-2496(77)90033-5

    Article  MathSciNet  MATH  Google Scholar 

  40. Saaty TL (2000) Fundamentals of decision making and priority theory with the analytic. p 478

    Google Scholar 

  41. Song HM, Xue L (2016) Dynamic monitoring and analysis of ecological environment in Weinan City, Northwest China based on RSEI model. Chinese J Appl Ecol 27(12):3913–3919. https://doi.org/10.13287/j.1001-9332.201612.024

    Article  Google Scholar 

  42. Eastman JR, IDRISI Taiga: guide to gis and image processing, p 342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Zubair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zubair, S., Jain, S.K., Somvanshi, S. (2021). Comparative Analysis and Prediction of Ecological Quality of Delhi. In: Al Khaddar, R., Kaushika, N.D., Singh, S., Tomar, R.K. (eds) Advances in Energy and Environment . Lecture Notes in Civil Engineering, vol 142. Springer, Singapore. https://doi.org/10.1007/978-981-33-6695-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6695-4_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6694-7

  • Online ISBN: 978-981-33-6695-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation