Chitosan Nanoparticle: Alternative for Sustainable Agriculture

  • Chapter
  • First Online:
Nanomaterials and Nanotechnology

Abstract

Chitosan is a natural polysaccharide derived from chitin and extracted from agroindustrial residues such as the exoskeleton of crustaceous and other animals. Considered as one of the most abundant organic materials in nature, it has been widely used in several applications of industrial interest, mainly for its environmentally sustainable properties like biodegradability, biocompatibility, non-toxicity, and renewability. Due to the presence of amino groups in their chemical structure, chitosan has great versatility of modifications and formulations for industrial applications, such as controlled release, surface modification, and preparation of nanoparticles. Here, we review some of the successes with chitosan nanoparticles as biomedical applications and their preparation, ionic cross-linked emulsified chitosan, absorption and bioavailability, delivery systems, quality monitoring, and wastewater treatment. However, some problems that these chitosan nanoparticles may cause will be discussed, for example, mechanical resistance, dissolution, and hydrophilicity/hydrophobicity under certain conditions. Finally, some solutions are proposed, like crosslinking agents, and physicochemical modifications, to manipulate particle size and stability. This chapter gives a comprehensive review of the advantages and recent developments in the formulation of chitosan nanoparticles as an alternative for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 111.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelgawad A, Hudson S (2019) Chitosan nanoparticles: polyphosphates cross-linking and protein delivery properties. Int J Biol Macromol 136:133–142

    Article  CAS  Google Scholar 

  • Abdelgawad AM, Hudson SM, Rojas OJ (2014) Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym 100:166–178

    Article  CAS  Google Scholar 

  • AbdElhady MM (2012) Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int J Carbohydr Chem 2012:1–6

    Article  CAS  Google Scholar 

  • Abo Elsoud MM, El Kady EM (2019) Current trends in fungal biosynthesis of chitin and chitosan. Bull Natl Res, Cent, p 43

    Google Scholar 

  • Agbai ON, Buster K, Sanchez M, Hernandez C, Kundu RV, Chiu M, Roberts WE, Draelos ZD, Bhushan R, Taylor SC, Lim HW (2014) Skin cancer and photoprotection in people of color: a review and recommendations for physicians and the public. J Am Acad Dermatol 70:748–762

    Article  Google Scholar 

  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release

    Google Scholar 

  • Agulló E, Rodríguez MS, Ramos V, Albertengo L (2003) Present and future role of chitin and chitosan in food. Macromol Biosci 3:521–530

    Article  CAS  Google Scholar 

  • Ahmad M, Manzoor K, Ikram S (2019) Chitosan nanocomposites for bone and cartilage regeneration. In: Applications of nanocomposite materials in dentistry. Elsevier, pp 307–317

    Google Scholar 

  • Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. LWT—Food Sci Technol 43:837–842

    Article  CAS  Google Scholar 

  • Alarcón-Payán DA, Koyani RD, Vazquez-Duhalt R (2017) Chitosan-based biocatalytic nanoparticles for pollutant removal from wastewater. Enzyme Microb Technol 100:71–78

    Article  CAS  Google Scholar 

  • Ali SW, Rajendran S, Joshi M (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 83:438–446

    Article  CAS  Google Scholar 

  • Ali A, Alsalhi MS, Atif M, Ansari AA, Israr MQ, Sadaf JR, Ahmed E, Nur O, Willander M (2013) Potentiometric urea biosensor utilizing nanobiocomposite of chitosan-iron oxide magnetic nanoparticles. In: Journal of physics: conference series. p 012024

    Google Scholar 

  • Alizadeh L, Zarebkohan A, Salehi R, Ajjoolabady A, Rahmati-Yamchi M (2019) Chitosan-based nanotherapeutics for ovarian cancer treatment. J Drug Target 27:839–852

    Article  CAS  Google Scholar 

  • Al-qadi S, Grenha A, Carrión-recio D, Seijo B, Remuñán-lópez C (2012) Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release 157:383–390

    Article  CAS  Google Scholar 

  • Altun GD, Cetinus SA (2007) Immobilization of pepsin on chitosan beads. Food Chem 100:964–971

    Article  CAS  Google Scholar 

  • Anand M, Sathyapriya P, Maruthupandy M, Hameedha Beevi A (2018) Synthesis of chitosan nanoparticles by TPP and their potential mosquito larvicidal application. Front Lab Med 2:72–78

    Article  Google Scholar 

  • Anitha A, Rani VVD, Krishna R, Sreeja V, Selvamurugan N, Nair SV, Tamura H, Jayakumar R (2009) Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N, O-carboxymethyl chitosan nanoparticles. Carbohydr Polym 78:672–677

    Article  CAS  Google Scholar 

  • Anjani K, Kailasapathy K, Phillips M (2007) Microencapsulation of enzymes for potential application in acceleration of cheese ripening. Int Dairy J 17:79–86

    Article  CAS  Google Scholar 

  • Annur D, Wang ZK, Der Liao J, Kuo C (2015) Plasma-synthesized silver nanoparticles on electrospun chitosan nanofiber surfaces for antibacterial applications. Biomacromol 16:3248–3255

    Article  CAS  Google Scholar 

  • Anusha JR, Raj CJ, Cho B-B, Fleming AT, Yu K-H, Kim BC (2015) Amperometric glucose biosensor based on glucose oxidase immobilized over chitosan nanoparticles from gladius of Uroteuthis duvauceli. Sens Actuators B Chem 215:536–543

    Article  CAS  Google Scholar 

  • Aranaz I, Mengíbar M, Harris R, Paños I, Miralles B, Acosta N, Galed G, Heras Á (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3:203–230

    CAS  Google Scholar 

  • Archana D, Singh BK, Dutta J, Dutta PK (2015) Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. Int J Biol Macromol 73:49–57

    Article  CAS  Google Scholar 

  • Argüelles-Monal W, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota M, Montiel-Herrera M (2018) Chitosan derivatives: introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers (Basel) 10:342

    Article  CAS  Google Scholar 

  • Asiri SM, Khan FA, Bozkurt A (2018) Synthesis of chitosan nanoparticles, chitosan-bulk, chitosan nanoparticles conjugated with glutaraldehyde with strong anti-cancer proliferative capabilities. Artif Cells Nanomedicine Biotechnol 46:S1152–S1161

    Article  CAS  Google Scholar 

  • Atta-ur-Rahman FRS(2018) Advances in organic synthesis. Bentham Science, Sharjah

    Google Scholar 

  • Aydemir T, Güler S (2015) Characterization and immobilization of Trametes versicolor laccase on magnetic chitosan–clay composite beads for phenol removal. Artif Cells Nanomedicine Biotechnol 43:425–432

    Article  CAS  Google Scholar 

  • Baghdan E, Pinnapireddy SR, Strehlow B, Engelhardt KH, Schäfer J, Bakowsky U (2018) Lipid coated chitosan-DNA nanoparticles for enhanced gene delivery. Int J Pharm 535:473–479

    Article  CAS  Google Scholar 

  • Bahrami S, Esmaeilzadeh S, Zarei M, Ahmadi F (2015) Potential application of nanochitosan film as a therapeutic agent against cutaneous leishmaniasis caused by L. major. Parasitol Res 114:4617–4624

    Article  Google Scholar 

  • Bai Y, Shen B, Zhang S, Zhu Z, Sun S, Jun G, Li B, Wang Y, Zhang R, We F (2019) Storage of mechanical energy based on carbon nanotubes with high energy density and power density. Adv Mater 31:1800680

    Article  CAS  Google Scholar 

  • Baniasadi H, Ramazani SA, Mashayekhan S (2015) Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol 74:360–366

    Article  CAS  Google Scholar 

  • Bashari A, Rouhani Shirvan A, Shakeri M (2018) Cellulose-based hydrogels for personal care products. Polym Adv Technol 29:2853–2867

    Article  CAS  Google Scholar 

  • Batista CPM, Caetano AA, Rossi MA, Gonçalves MA (2019) Chitosan-iron oxide hybrid composite: mechanism of hexavalent chromium removal by central composite design and theoretical calculations. Environ Sci Pollut Res 26:15973–15988

    Article  CAS  Google Scholar 

  • Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    Article  CAS  Google Scholar 

  • Bezerra RM, Neto DMA, Galvão WS, Rios NS, de Carvalho ACLM, Correa MA, Bohn F, Fernandez-Lafuente R, Fechine PBA, de Mattos MC, dos Santos JCS, Gonçalves LRB (2017) Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors. Biochem Eng J 125:104–115

    Google Scholar 

  • Bonazza HL, Manzo RM, dos Santos JCS, Mammarella EJ (2018) Operational and thermal stability analysis of thermomyces lanuginosus lipase covalently immobilized onto modified chitosan supports. Appl Biochem Biotechnol 184:182–196

    Article  CAS  Google Scholar 

  • Brar V, Kaur G (2018) Preparation and characterization of polyelectrolyte complexes of hibiscus esculentus (Okra) gum and chitosan. Int J Biomater 7

    Google Scholar 

  • Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36

    Article  Google Scholar 

  • Cadet J, Douki T, Ravanat J-L (2015) Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol 91:140–155

    Article  CAS  Google Scholar 

  • Călinoiu L-F, Ştefănescu B, Pop I, Muntean L, Vodnar D (2019) Chitosan coating applications in probiotic microencapsulation. Coatings 9:194

    Article  CAS  Google Scholar 

  • Callewaert C, De Maeseneire E, Kerckhof FM, Verliefde A, Van de Wiele T, Boon N (2014) Microbial odor profile of polyester and cotton clothes after a fitness session. Appl Environ Microbiol 80:6611–6619

    Article  CAS  Google Scholar 

  • Calvo P, Alonso MJ, Vila A, Sanchez A, Tobıo M (2002) Design of biodegradable particles for protein delivery. J Control Release 78:15–24

    Article  Google Scholar 

  • Casadidio C, Peregrina DV, Gigliobianco MR, Deng S, Censi R, Di Martino P (2019) Chitin and chitosans: characteristics, eco-friendly processes, and applications in cosmetic science. Mar Drugs 17:369

    Article  CAS  Google Scholar 

  • Cazón P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148

    Article  CAS  Google Scholar 

  • Chaichi MJ, Ehsani M (2016) A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol–H2O2–gold nanoparticle chemiluminescence detection system. Sens Actuators B Chem 223:713–722

    Article  CAS  Google Scholar 

  • Chandra Hembram K, Prabha S, Chandra R, Ahmed B, Nimesh S (2016) Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif Cells Nanomedicine Biotechnol 44:305–314

    Article  CAS  Google Scholar 

  • Chandrasekar S, Vijayakumar S, Rajendran R (2014) Application of chitosan and herbal nanocomposites to develop antibacterial medical textile. Biomed Aging Pathol 4:59–64

    Article  CAS  Google Scholar 

  • Chellapandian M, Krishnan MRV (1998) Chitosan-poly (glycidyl methacrylate) copolymer for immobilization of urease. Process Biochem 33:595–600

    Article  CAS  Google Scholar 

  • Chen S-C, Duan K-J (2015) Production of galactooligosaccharides using β-galactosidase immobilized on chitosan-coated magnetic nanoparticles with tris(hydroxymethyl)phosphine as an optional coupling agent. Int J Mol Sci 16:12499–12512

    Article  CAS  Google Scholar 

  • Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R Reports 87:1–57

    Article  Google Scholar 

  • Chen L, Zhu J, Li Y, Lu J, Gao L, Xu H, Fan M, Yang X (2013) Enhanced nasal mucosal delivery and immunogenicity of anti-caries DNA vaccine through incorporation of anionic liposomes in chitosan/DNA complexes. PLoS ONE 8:e71953

    Article  CAS  Google Scholar 

  • Chiari-Andréo BG, de Almeida-Cincotto MGJ, Oshiro JA, Taniguchi CYY, Chiavacci LA, Isaac VLB (2019) Nanoparticles for cosmetic use and its application. In: Nanoparticles in pharmacotherapy. Elsevier, pp 113–146

    Google Scholar 

  • Choudhary RC, Kumari S, Amy RK, Sharma G, Kumar A, Budhwar S, Pal A, Raliya R, Pratim B, Saharan V (2019) Chitosan nanomaterials for smart delivery of bioactive compounds in agriculture. In: Raliya R (ed) Nanoscale engineering in agricultural management. CRC Press, Boca Raton, p 214

    Google Scholar 

  • Chuan D, ** T, Fan R, Zhou L, Guo G (2019) Chitosan for gene delivery: methods for improvement and applications. Adv Colloid Interface Sci 268:25–38

    Article  CAS  Google Scholar 

  • Cipolatti EP, Valério A, Henriques RO, Moritz DE, Ninow JL, Freire DMG, Manoel EA, Fernandez-Lafuente R, de Oliveira D (2016) Nanomaterials for biocatalyst immobilization-state of the art and future trends. RSC Adv 6:104675–104692

    Article  CAS  Google Scholar 

  • Corsi K, Chellat F, Yahia L, Fernandes JC (2003) Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials 24:1255–1264

    Article  CAS  Google Scholar 

  • Cota-Arriola O, Cortez-Rocha MO, Rosas-Burgos EC, Burgos-Hernández A, López-Franco YL, Plascencia-Jatomea M (2013) Antifungal effect of chitosan on the growth of Aspergillus parasiticus and production of aflatoxin B1. Polym Int 60:937–944

    Article  CAS  Google Scholar 

  • Crini NM, Lichtfouse E, Torri G, Crini G (2019) Fundamentals and applications of chitosan. In: Crini G, Lichtfouse E (eds) Sustainable agriculture reviews. Springer, Cham

    Google Scholar 

  • Dabiri G, Damstetter E, Phillips T (2016) Choosing a wound dressing based on common wound characteristics. Adv Wound Care 5:32–41

    Article  Google Scholar 

  • Darwesh OM, Sultan YY, Seif MM, Marrez DA (2018) Bio-evaluation of crustacean and fungal nano-chitosan for applying as food ingredient. Toxicol Reports 5:348–356

    Article  CAS  Google Scholar 

  • de Masi A, Tonazzini I (2019) Chitosan films for regenerative medicine: fabrication methods and mechanical characterization of nanostructured chitosan films 1–9

    Google Scholar 

  • de Oliveira UMF, Lima de Matos LJB, de Souza MCM, Pinheiro BB, dos Santos JCS, Gonçalves LRB (2018) Effect of the presence of surfactants and immobilization conditions on catalysts’ properties of Rhizomucor miehei lipase onto chitosan. Appl Biochem Biotechnol 184:1263–1285

    Article  CAS  Google Scholar 

  • de Souza TC, de Fonseca TS, da Costa JA, Rocha MVP, de Mattos MC, Fernandez-Lafuente R, Gonçalves LRB, dos Santos JCS (2016) Cashew apple bagasse as a support for the immobilization of lipase B from Candida antarctica: application to the chemoenzymatic production of (R)-Indanol. J Mol Catal B Enzym 130:58–69

    Article  CAS  Google Scholar 

  • Demirci C, Marras S, Prato M, Pasquale L, Manna L, Colombo M (2019) Design of catalytically active porous gold structures from a bottom-up method: the role of metal traces in CO oxidation and oxidative coupling of methanol. J Catal 375:279–286

    Article  CAS  Google Scholar 

  • Devlieghere F, Vermeulen A, Debevere J (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21:703–714

    Article  CAS  Google Scholar 

  • Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:1–19

    Article  Google Scholar 

  • Diab M, Curtil D, El-shinnawy N, Hassan ML, Zeid IF, Mauret E (2015) Biobased polymers and cationic microfibrillated cellulose as retention and drainage aids in papermaking: comparison between softwood and bagasse pulps. Ind Crops Prod 72:34–45

    Article  CAS  Google Scholar 

  • Dincer I (2018) Comprehensive energy systems (1st ed). Elsevier, Amsterdam

    Google Scholar 

  • Divya K, Jisha MS (2018) Chitosan nanoparticles preparation and applications. Environ Chem Lett 16:101–112

    Article  CAS  Google Scholar 

  • Doan CT, Tran TN, Nguyen VB, Vo TPKV, Nguyen AD, Wang S (2019) Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. Int J Biol Macromol 131:706–715

    Article  CAS  Google Scholar 

  • Dongre RS (2018) Chitosan-derived synthetic ion exchangers: characteristics and applications

    Google Scholar 

  • Dongre RS (2019) Chitosan formulations: chemistry, characteristics and contextual adsorption in unambiguous modernization of S&T. Hystersis Compos

    Google Scholar 

  • dos Santos Rodrigues B, Lakkadwala S, Sharma D, Singh J (2019) Chitosan for gene, DNA vaccines, and drug delivery. In: Materials for biomedical engineering. Elsevier, Amsterdam, pp 515–550

    Google Scholar 

  • dos Santos JCS, Garcia-Galan C, Rodrigues RC, de Sant’ Ana HB, Gonçalves LRB, Fernandez-Lafuente R (2014) Improving the catalytic properties of immobilized Lecitase via physical coating with ionic polymers. Enzyme Microb Technol 60:1–8

    Google Scholar 

  • dos Santos JCS, Rueda N, Gonçalves LRB, Fernandez-Lafuente R (2015a) Tuning the catalytic properties of lipases immobilized on divinylsulfone activated agarose by altering its nanoenvironment. Enzyme Microb Technol 77:1–7

    Article  CAS  Google Scholar 

  • dos Santos JCS, Rueda N, Sanchez A, Villalonga R, Gonçalves LRB, Fernandez-Lafuente R (2015b) Versatility of divinylsulfone supports permits the tuning of CALB properties during its immobilization. RSC Adv 5:35801–35810

    Article  CAS  Google Scholar 

  • dos Santos JCS, Bonazza HL, de Matos LJBL, Carneiro EA, Barbosa O, Fernandez-Lafuente R, Gonçalves LRB, de Sant’ Ana HB, Santiago-Aguiar RS (2017) Immobilization of CALB on activated chitosan: application to enzymatic synthesis in supercritical and near-critical carbon dioxide. Biotechnol Reports 14:16–26

    Google Scholar 

  • dos Silva MS, Cocenza DS, Grillo R, de Melo NFS, Tonello PS, de Oliveira LC, Cassimiro DL, Rosa AH, Fraceto LF (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190:366–374

    Google Scholar 

  • Dowling M (2019) Hydrophobically—modified chitosan for use in cosmetics and personal care applications

    Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Reports 15:11–23

    Article  Google Scholar 

  • Durán N, Marcato PD, de Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  CAS  Google Scholar 

  • El Knidri H, Belaabed R, Addaou A, Laajeb A, Lahsini A (2018) Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol Macromol 120:1181–1189

    Article  CAS  Google Scholar 

  • El-Hefian EA, Nasef MM, Yahaya AH (2014) Chitosan-based polymer blends: current status and applications. Chem Soc Pak 36:11–27

    CAS  Google Scholar 

  • Esfandiarpour-Boroujeni S, Bagheri-Khoulenjani S, Mirzadeh H, Amanpour S (2017) Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydr Polym 168:14–21

    Article  CAS  Google Scholar 

  • Eshghi S, Hashemi M (2014) Effect of nanochitosan-based coating with and without copper loaded on physicochemical and bioactive components of fresh strawberry fruit (Fragaria x ananassa Duchesne) during storage. Food Bioprocess Techonoly 7:2397–2409

    Article  CAS  Google Scholar 

  • Fang H, Huang J, Ding L, Li M, Chen Z (2009) Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J Wuhan Univ Technol Sci Ed 24:42–47

    Article  CAS  Google Scholar 

  • Farias CBB, Silva AF, Rufino RD, Luna JM, Gomes Souza JE, Sarubbo LA (2014) Synthesis of silver nanoparticles using a biosurfactant produced in low-costmediumas stabilizing agent. Electron J Biotechnol 17:122–125

    Article  CAS  Google Scholar 

  • Fernandez-Lopez L, Rueda N, Bartolome-Cabrero R, Rodriguez MD, Albuquerque TL, dos Santos JCS, Barbosa O, Fernandez-Lafuente R (2016) Improved immobilization and stabilization of lipase from Rhizomucor miehei on octyl-glyoxyl agarose beads by using CaCl2. Process Biochem 51:48–52

    Article  CAS  Google Scholar 

  • Fernández-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16:1576–1581

    Article  Google Scholar 

  • Fisher MB, Mauck RL, Qu F, Lin J-MG, Esterhai JL (2013) Biomaterial-mediated delivery of degradative enzymes to improve meniscus integration and repair. Acta Biomater 9:6393–6402

    Article  CAS  Google Scholar 

  • Fu L, Wang Z, Dhankher OP, **ng B (2019a) Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. J Exp Bot

    Google Scholar 

  • Fu S, Sun Z, Huang P, Li Y, Hu N (2019b) Some basic aspects of polymer nanocomposites: a critical review. Nano Mater Sci 1:2–30

    Article  Google Scholar 

  • Galvão WS, Pinheiro BB, Golçalves LRB, de Mattos MC, Fonseca TS, Regis T, Zampieri D, dos Santos JCS, Costa LS, Correa MA, Bohn F, Fechine PBA (2018) Novel nanohybrid biocatalyst: application in the kinetic resolution of secondary alcohols. J Mater Sci 53:14121–14137

    Article  CAS  Google Scholar 

  • Gan Q, Wang T (2007) Chitosan nanoparticle as protein delivery carrier-systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B 59:24–34

    Article  CAS  Google Scholar 

  • Garg U, Chauhan S, Nagaich U, Jain N (2019) Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull 19:195–204

    Article  CAS  Google Scholar 

  • Goh PS, Ong CS, Ng BC, Ismail AF (2019) Applications of emerging nanomaterials for oily wastewater treatment. Nanotechnol Water Wastewater Treat 101–113

    Google Scholar 

  • Gopakumar DA, Pai AR, Pasquini D, Ben LS-Y, Khalil AHPS, Thomas S (2019) Nanomaterials—state of art, new challenges, and opportunities. In: Nanoscale materials in water purification. Elsevier, Amsterdam, pp 1–24

    Google Scholar 

  • Grenha A (2012) Chitosan nanoparticles: a survey of preparation methods. J Drug Target

    Google Scholar 

  • Habibie S, Hamzah M, Anggaravidya M, Kalembang E (2016) The effect of chitosan on physical and mechanical properties of paper. J Chem Eng Mater Sci 7:1–10

    Google Scholar 

  • Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50

    Article  CAS  Google Scholar 

  • Harkin C, Mehlmer N, Woortman DV, Brück TB, Brück WM (2019) Nutritional and additive uses of chitin and chitosan in the food industry. pp 1–43

    Google Scholar 

  • Harris R, Lecumberri E, Mateos-Aparicio I, Mengíbar M, Heras A (2011) Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydr Polym 84:803–806

    Article  CAS  Google Scholar 

  • Hashem AM, Gamal AA, Hassan ME, Hassanein NM, Esawy MA (2016) Covalent immobilization of Enterococcus faecalis Esawy dextransucrase and dextran synthesis. Int J Biol Macromol 82:905–912

    Article  CAS  Google Scholar 

  • Hasnain MS, Nayak AK (eds) (2019) Natural polysaccharides in drug delivery and biomedical application. Academic Press, Cambridge

    Google Scholar 

  • Hebeish A, Sharaf S, Farouk A (2013) Utilization of chitosan nanoparticles as a green finish in multifunctionalization of cotton textile. Int J Biol Macromol 60:10–17

    Article  CAS  Google Scholar 

  • Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66:185–297

    Article  CAS  Google Scholar 

  • Huang K-S, Wu W-J, Chen J-B, Lian H-S (2008) Application of low-molecular-weight chitosan in durable press finishing. Carbohydr Polym 73:254–260

    Article  CAS  Google Scholar 

  • Huang J, Yin Y, Pan Z, Zhang G, Zhu A, Liu X, Jiao X (2010) Intranasal immunization with chitosan/pCAGGS-flaA nanoparticles inhibits Campylobacter jejuni in a White Leghorn Model

    Google Scholar 

  • Ibrahim MM, Abd-Elgawad A-EH, Soliman OA-E, Jablonski MM (2015) Natural bioadhesive biodegradable nanoparticle-based topical ophthalmic formulations for management of glaucoma. Transl Vis Sci Technol 4:12

    Article  Google Scholar 

  • Islam S, Butola BS, Roy A (2018) Chitosan polysaccharide as a renewable functional agent to develop antibacterial, antioxidant activity and colourful shades on wool dyed with tea extract polyphenols. Int J Biol Macromol 120:1999–2006

    Article  CAS  Google Scholar 

  • Islam N, Dmour I, Taha MO (2019) Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon 5:e01684

    Article  Google Scholar 

  • Itodo HU (2019) Controlled release of herbicides using nano-formulation: a review. J Chem Rev 1:130–138

    Article  Google Scholar 

  • Jadhav K, Dhamecha D, Bhattacharya D, Patil M (2016) Green and ecofriendly synthesis of silver nanoparticles: characterization, biocompatibility studies and gel formulation for treatment of infections in burns. Photochem Photobiol B Biol 155:109–115

    Article  CAS  Google Scholar 

  • Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47:83–97

    Article  CAS  Google Scholar 

  • Jasour MS, Ehsani A, Samaneh S (2014) Chitosan coating incorporated with the lactoperoxidase system: an active edible coating for fish preservation. J Sci Food Agric 95:1373–1378

    Article  CAS  Google Scholar 

  • Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337

    Article  CAS  Google Scholar 

  • Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W (2019) Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev 48:3683–3704

    Article  CAS  Google Scholar 

  • Jimtaisong A, Saewan N (2014) Utilization of carboxymethyl chitosan in cosmetics. Int J Cosmet Sci 36:12–21

    Article  CAS  Google Scholar 

  • Joshi H, Somdutt, Choudhary P, Mundra S (2019) Future prospects of nanotechnology in agriculture. Int J Chem Stud 7:957–963

    Google Scholar 

  • Ju H-Y, Kuo C-H, Too J-R, Huang H-Y, Twu Y-K, Chang C-MJ, Liu Y-C, Shieh C-J (2012) Optimal covalent immobilization of α-chymotrypsin on Fe3O4-chitosan nanoparticles. J Mol Catal B Enzym 78:9–15

    Article  CAS  Google Scholar 

  • Kalkan NA, Aksoy S, Aksoy EA, Hasirci N (2012) Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J Appl Polym Sci 123:707–716

    Article  CAS  Google Scholar 

  • Kashyap PL, **ang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  Google Scholar 

  • Kaushik A, Solanki PR, Ansari AA, Sumana G, Ahmad S, Malhotra BD (2009) Iron oxide-chitosan nanobiocomposite for urea sensor. Sens Actuators B Chem 138:572–580

    Article  CAS  Google Scholar 

  • Kermanizadeh A, Powell LG, Stone V, Møller P (2018) Nanodelivery systems and stabilized solid-drug nanoparticles for orally administered medicine: current landscape. Int J Nanomedicine 13:7575–7605

    Article  CAS  Google Scholar 

  • Khan N, Mukhtar H (2019) Tea polyphenols in promotion of human health. Nutrients 11:39

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem

    Google Scholar 

  • Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A: Chem 328:8–26

    Article  CAS  Google Scholar 

  • Khattak S, Wahid F, Liu L-P, Jia S-R, Chu L-Q, **e Y-Y, Li Z-X, Zhong C (2019) Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. Appl Microbiol Biotechnol 103:1989–2006

    Article  CAS  Google Scholar 

  • Klein MP, Nunes MR, Rodrigues RC, Benvenutti EV, Costa TMH, Hertz PF, Ninow JL (2012) Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Biomacromol 13:2456–2464

    Article  CAS  Google Scholar 

  • Kolahalam LA, Kasi Viswanath IV, Diwakar BS, Govindh B, Reddy V, Murthy YLN (2019) Review on nanomaterials: synthesis and applications. Mater Today Proc

    Google Scholar 

  • Kosheleva R, Mitropoulos AC, Kyzas GZ (2019) Effect of grafting on chitosan adsorbents, composite nanoadsorbents. Elsevier Inc, Amsterdam

    Google Scholar 

  • Kosseva MR, Panesar PS, Kaur G, Kennedy JF (2009) Use of immobilised biocatalysts in the processing of cheese whey. Int J Biol Macromol 45:437–447

    Article  CAS  Google Scholar 

  • Koyani RD, Vazquez-Duhalt R (2016) Laccase encapsulation in chitosan nanoparticles enhances the protein stability against microbial degradation. Environ Sci Pollut Res 23:18850–18857

    Article  CAS  Google Scholar 

  • Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35:126–139

    Article  CAS  Google Scholar 

  • Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Article  Google Scholar 

  • Kumar V, Dandapat S, Kumar A, Kumar N (2014) Preparation and characterization of chitosan nanoparticles “Alternatively, carrying potential” for cellular and humoral immune responses. Adv Anim Vet Sci 2:414–417

    Article  Google Scholar 

  • Kumar S, Bhushan P, Bhattacharya S (2017) Fabrication of nanostructures with bottom-up approach and their utility in diagnostics, therapeutics, and others. Environmental, chemical and medical sensors. Springer, Singapore, pp 167–198

    Google Scholar 

  • Kumar S, Ye F, Dobretsov S, Dutta J (2019) Chitosan nanocomposite coatings for food, paints, and water treatment applications. Appl Sci 9:2409

    Article  CAS  Google Scholar 

  • Kuo C-H, Liu Y-C, Chang C-MJ, Chen J-H, Chang C, Shieh C-J (2012) Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr Polym 87:2538–2545

    Article  CAS  Google Scholar 

  • Lee K, Meng X, Kang T-Y, Ko S (2015) A dye-incorporated chitosan-based CO2 indicator for monitoring of food quality focusing on makgeolli quality during storage. Food Sci Biotechnol 24:905–912

    Article  CAS  Google Scholar 

  • Leonida M, Belbekhouche S, Adams F, Bijja UK, Choudhary D-A, Kumar I (2019) Enzyme nanovehicles: histaminase and catalase delivered in nanoparticulate chitosan. Int J Pharm 557:145–153

    Article  CAS  Google Scholar 

  • Li Y, Yu J, Hu S, Chen Z, Sacchetti M, Sun CC, Yu L (2019) Polymer nanocoating of amorphous drugs for improving stability, dissolution, powder flow, and tabletability: the case of chitosan-coated indomethacin. Mol Pharm 16:1305–1311

    Article  CAS  Google Scholar 

  • Liang J, Yan H, Puligundla P, Gao X, Zhou Y (2017) Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: a review. Food Hydrocoll 67:286–292

    Article  CAS  Google Scholar 

  • Lima GV, da Silva MR, de Sousa Fonseca T, de Lima LB, de da Oliveira MCF, de Lemos TLG, Zampieri D, dos Santos JCS, Rios NS, Gonçalves LRB, Molinari F, de Mattos MC (2017) Chemoenzymatic synthesis of (S)-Pindolol using lipases. Appl Catal A Gen 546:7–14

    Google Scholar 

  • Liu Y, Wang M, Zhao F, Xu Z, Dong S (2005) The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens Bioelectron 21:984–988

    Article  CAS  Google Scholar 

  • Liu Y, Sun Y, Li Y, Xu S, Tang J, Ding J, Xu Y (2011) Preparation and characterization of α-galactosidase-loaded chitosan nanoparticles for use in foods. Carbohydr Polym 83:1162–1168

    Article  CAS  Google Scholar 

  • Liu M, Dai X, Guan R, Xu X (2014) Immobilization of Aspergillus niger xylanase A on Fe3O4-coated chitosan magnetic nanoparticles for xylooligosaccharide preparation. Catal Commun 55:6–10

    Article  CAS  Google Scholar 

  • Liu D, Yang F, **ong F, Gu N (2016) The smart drug delivery system and its clinical potential. Theranostics 6:1306–1323

    Article  CAS  Google Scholar 

  • Lombardo D, Kiselev MA, Caccamo MT (2019) Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019:26

    Article  CAS  Google Scholar 

  • Lone IH, Radwan NRE, Aslam J, Akhter A (2018) Concept of reverse micelle method for the synthesis of nano-structured materials. Curr Nanosci 15:129–136

    Article  CAS  Google Scholar 

  • Lu K-Y, Lin Y-C, Lu H-T, Ho Y-C, Weng S-C, Tsai M-L, Mi F-L (2019) A novel injectable in situ forming gel based on carboxymethyl hexanoyl chitosan/hyaluronic acid polymer blending for sustained release of berberine. Carbohydr Polym 206:664–673

    Article  CAS  Google Scholar 

  • Luangtana-anan M, Nunthanid J, Limmatvapirat S (2019) Potential of different salt forming agents on the formation of chitosan nanoparticles as carriers for protein drug delivery systems. J Pharm Investig 49:37–44

    Article  CAS  Google Scholar 

  • Ma Y, Liu P, Si C, Liu Z (2010) Chitosan nanoparticles: preparation and application in antibacterial paper. J Macromol Sci Part B Phys 49:994–1001

    Article  CAS  Google Scholar 

  • Ma F, Wang Y, Yang G (2019) The modulation of chitosan-DNA interaction by concentration and pH in solution. Polymers (Basel). 11

    Google Scholar 

  • Magalhães J (1998) Urea potentiometric biosensor based on urease immobilized on chitosan membranes. Talanta 47:183–191

    Article  Google Scholar 

  • Manoel EA, dos Santos JCS, Freire DMG, Rueda N, Fernandez-Lafuente R (2015a) Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme Microb Technol 71:53–57

    Article  CAS  Google Scholar 

  • Manoel EA, Ribeiro MFP, dos Santos JCS, Coelho MAZ, Simas ABC, Fernandez-Lafuente R, Freire DMG (2015b) Accurel MP 1000 as a support for the immobilization of lipase from Burkholderia cepacia: application to the kinetic resolution of myo-inositol derivatives. Process Biochem 50:1557–1564

    Article  CAS  Google Scholar 

  • Manoel EA, Pinto M, dos Santos JCS, Tacias-Pascacio VG, Freire DMG, Pinto JC, Fernandez-Lafuente R (2016) Design of a core-shell support to improve lipase features by immobilization. RSC Adv 6:62814–62824

    Article  CAS  Google Scholar 

  • Manrich A, Komesu A, Adriano WS, Tardioli PW, Giordano RLC (2010) Immobilization and stabilization of xylanase by multipoint covalent attachment on agarose and on chitosan supports. Appl Biochem Biotechnol 161:455–467

    Article  CAS  Google Scholar 

  • Martínez-Ruvalcaba A, Sánchez-Díaz JC, Becerra F, Cruz-Barba LE, González-Álvarez A (2009) Swelling characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels. Express Polym Lett 3:25–32

    Article  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    Article  CAS  Google Scholar 

  • Mauricio MD, Guerra-Ojeda S, Marchio P, Valles SL, Aldasoro M, Escribano-Lopez I, Herance JR, Rocha M, Vila JM, Victor VM (2018) Nanoparticles in medicine: a focus on vascular oxidative stress. Oxid Med Cell Longev 2018:20

    Article  CAS  Google Scholar 

  • Melo ADQ, Silva FFM, dos Santos JCS, Fernández-Lafuente R, Lemos TLG, Dias Filho FA (2017) Synthesis of benzyl acetate catalyzed by lipase immobilized in nontoxic chitosan-polyphosphate beads. Molecules 22

    Google Scholar 

  • Meramo-Hurtado S, Herrera-Barros A, González-Delgado Á (2019) Evaluation of large-scale production of chitosan microbeads modified with nanoparticles based on exergy analysis. Energies 12:1200

    Article  CAS  Google Scholar 

  • Meryam Sardar RA (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem 04

    Google Scholar 

  • Mitra S, Gaur U, Ghosh PC, Maitra AN (2001) Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Controlled Release 317–323

    Google Scholar 

  • Mohammadpour Dounighi N, Damavandi M, Zolfagharian H, Moradi S (2012) Preparing and characterizing chitosan nanoparticles containing hemiscorpius lepturus scorpion venom as an antigen delivery system. Arch Razi Inst 67:145–153

    Google Scholar 

  • Mohammed MA, Syeda JTM, Wasan KM, Wasan EK (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9:53

    Article  CAS  Google Scholar 

  • Monteiro RRC, Lima PJM, Pinheiro BB, Freire TM, Dutra LMU, Fechine PBA, Gonçalves LRB, de Souza MCM, Santos JCS, Fernandez-Lafuente R (2019) Immobilization of lipase A from Candida antarctica onto chitosan-coated magnetic nanoparticles. Int J Mocelular Sci 20

    Google Scholar 

  • Morganti P, Fabrizi G, Palombo P, Palombo M, Ruocco E, Cardillo A, Morganti G (2008) Chitin-nanofibrils: a new active cosmetic carrier. J Appl Cosmetol

    Google Scholar 

  • Mouryaa VK, Inamdara NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1:11–33

    Google Scholar 

  • Müller R, Zhou M, Liebert T, Landers J, Salamon S, Webers S, Dellith A, Borin D, Heinze T, Wende H (2017) Mobility investigations of magnetic nanoparticles in biocomposites. Mater Chem Phys 193:364–370

    Article  CAS  Google Scholar 

  • Mutalik S, Shetty PK, Venuvanka V, Jagani HV, Gejjalagere CH, Nayak UY, Musmade PB, Reddy MS, Kalthur G, Udupa N, Ligade VS, Rao CM (2015) Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. Int J Nanomedicine 6477

    Google Scholar 

  • Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 105:1358–1368

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (1988) Carboxymethylated chitins and chitosans. Carbohydr Polym

    Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 58:1423–1430

    Article  CAS  Google Scholar 

  • Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62:97–103

    Article  CAS  Google Scholar 

  • Newman MD, Stotland M, Ellis JI (2009) The safety of nanosized particles in titanium dioxide– and zinc oxide–based sunscreens. J Am Acad Dermatol 61:685–692

    Article  CAS  Google Scholar 

  • Ng WL, Yeong WY, Naing MW (2016) Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering. Int J Bioprinting 2:10

    Article  Google Scholar 

  • Nguyen LT, Yang KL (2017) Enzyme Microb. Technol. Elsevier Inc. 100

    Google Scholar 

  • Nguyen VD, Styevkó G, Madaras E, Haktanirlar G, Tran ATM, Bujna E, Dam MS, Nguyen QD (2019) Immobilization of β-galactosidase on chitosan-coated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochem 0–1

    Google Scholar 

  • Noori R, Perwez M, Sardar M (2019) Cross-linked enzyme aggregates: current developments and applications. In: Husain Q, Ullah M (eds) Biocatalysis. Springer, Cham, pp 83–112

    Chapter  Google Scholar 

  • Norton JE, Espinosa YG, Watson RL, Spyropoulos F, Norton IT (2014) Functional food microstructures for macronutrient release and delivery. Food Funct 6:663–678

    Article  Google Scholar 

  • Ntohogian S, Gavriliadou V, Christodoulou E, Nanaki S, Lykidou S, Naidis P, Mischopoulou L, Barmpalexis P, Nikolaidis N, Bikiaris D (2018a) Chitosan nanoparticles with encapsulated natural and UF-purified annatto and saffron for the preparation of UV protective cosmetic emulsions. Molecules 23:2107

    Google Scholar 

  • Ntohogian S, Gavriliadou V, Christodoulou E, Nanaki S, Lykidou S, Naidis P, Mischopoulou L, Barmpalexis P, Nikolaidis N, Bikiaris DN (2018b) Chitosan nanoparticles with encapsulated natural and UF-purified annatto and saffron for the preparation of UV protective cosmetic emulsions. Molecules

    Google Scholar 

  • O’Brien FJ (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14:88–95

    Article  CAS  Google Scholar 

  • O’Brien S, Brus L, Murray CB (2001) Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J Am Chem Soc 123:12085–12086

    Article  CAS  Google Scholar 

  • Oliveira HC, Gomes BCR, Pelegrino MT, Seabra AB (2016) Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide—Biol Chem 61:10–19

    Article  CAS  Google Scholar 

  • Ortega N, Kumar A, Scott JF, Katiyar RS (2015) Multifunctional magnetoelectric materials for device applications. Phys Condens Matter 27:504002

    Article  CAS  Google Scholar 

  • Ortega F, García MA, Arce VB (2019) Nanocomposite films with silver nanoparticles synthesized in situ: effect of corn starch content. Food Hydrocoll 97:105200

    Article  CAS  Google Scholar 

  • Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R (2019) Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 9:2380–2420

    Article  CAS  Google Scholar 

  • Oryan A, Sahvieh S (2017) Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int J Biol Macromol 104:1003–1011

    Article  CAS  Google Scholar 

  • Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303

    Google Scholar 

  • Pan C, Hu B, Li W, Sun Y, Ye H, Zeng X (2009) Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J Mol Catal B Enzym 61:208–215

    Article  CAS  Google Scholar 

  • Pan C, Qian J, Fan J, Guo H, Gou L, Yang H, Liang C (2019) Preparation nanoparticle by ionic cross-linked emulsified chitosan and its antibacterial activity. Colloids Surf A Physicochem Eng Asp 568:362–370

    Article  CAS  Google Scholar 

  • Panão Costa J, Carvalho S, Jesus S, Soares E, Marques AP, Borges O (2019) Optimization of chitosan-α-casein nanoparticles for improved gene delivery: characterization, stability, and transfection efficiency. AAPS PharmSciTech 20:132

    Article  CAS  Google Scholar 

  • Pant A, Singh J (2018) Novel controlled ionic gelation strategy for chitosan nanoparticles preparation using TPP- β -CD inclusion complex. Eur J Pharm Sci 112:180–185

    Article  CAS  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Parreidt TS, Müller K, Schmid M (2018) Alginate-based edible films and coatings for food packaging applications. Foods 7:1–38

    Google Scholar 

  • Pinheiro MP, Rios NS, de Fonseca TS, de Bezerra FA, Rodríguez-Castellón E, Fernandez-Lafuente R, de Mattos MC, dos Santos JCS, Gonçalves LRB (2018) Kinetic resolution of drug intermediates catalyzed by lipase B from Candida antarctica immobilized on Immobead-350. Biotechnol Progress 2–48. 10.1002/btpr.2630

    Google Scholar 

  • Pinheiro BB, Rios NS, Rodríguez Aguado E, Fernandez-Lafuente R, Freire TM, Fechine PBA, dos Santos JCS, Gonçalves LRB (2019) Chitosan activated with divinyl sulfone: a new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica. Int J Biol Macromol 130:798–809

    Article  CAS  Google Scholar 

  • Prabaharan M, Mano JF (2004) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12:41–57

    Article  CAS  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  Google Scholar 

  • Quiñones JP, Peniche H, Peniche C (2018) Chitosan based self-assembled nanoparticles in drug delivery. Polymers (Basel) 10:1–32

    Article  CAS  Google Scholar 

  • Radt S (2018) Perspective of recent progress in immobilization of enzymes. Mnemosyne 71:41–57

    Article  Google Scholar 

  • Ragab TIM, Nada AA, Ali EA, Shalaby ASG, Soliman AAF, Emam M, El Raey MA (2019) Soft hydrogel based on modified chitosan containing P. granatum peel extract and its nano-forms: multiparticulate study on chronic wounds treatment. Int J Biol Macromol 135:407–421

    Article  CAS  Google Scholar 

  • Raghavendra GM, Jung J, Kim D, Seo J (2017) Effect of chitosan silver nanoparticle coating on functional properties of Korean traditional paper. Prog Org Coatings 110:16–23

    Article  CAS  Google Scholar 

  • Rastegari B, Karbalaei-Heidari HR, Zeinali S, Sheardown H (2017) The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: synthesis, characterization and cytotoxicity studies. Colloids Surf B Biointerfaces 158:589–601

    Article  CAS  Google Scholar 

  • Reis C, Sousa E, Serpa J, Oliveira R, Oliveira R, Santos J (2019) Design of immobilized enzyme biocatalysts: drawbacks and opportunities. Quim. Nova X:1–16

    Google Scholar 

  • Rios NS, Pinheiro BB, Pinheiro MP, Bezerra RM, dos Santos JCS, Barros Gonçalves LR (2018) Biotechnological potential of lipases from Pseudomonas: sources, properties and applications. Process Biochem 75:99–120

    Article  CAS  Google Scholar 

  • Roberfroid MB (2000) Prebiotics and probiotics: are they functional foods? Am J Clin Nutr 71:1682S–1687S

    Article  CAS  Google Scholar 

  • Rodrigues RC, Virgen-Ortíz JJ, dos Santos JCS, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R (2019) Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 37:746–770

    Article  CAS  Google Scholar 

  • Rueda N, dos Santos JCS, Torres R, Ortiz C, Barbosa O, Fernandez-Lafuente R (2015) Improved performance of lipases immobilized on heterofunctional octyl-glyoxyl agarose beads. RSC Adv 5:11212–11222

    Article  CAS  Google Scholar 

  • Rueda N, dos Santos JCS, Ortiz C, Torres R, Barbosa O, Rodrigues RC, Berenguer-Murcia Á, Fernandez-Lafuente R (2016) Chemical modification in the design of immobilized enzyme biocatalysts: drawbacks and opportunities. Chem Rec 16:1436–1455

    Article  CAS  Google Scholar 

  • Sadighi A, Faramarzi MA (2013) Congo red decolorization by immobilized laccase through chitosan nanoparticles on the glass beads. J Taiwan Inst Chem Eng 44:156–162

    Article  CAS  Google Scholar 

  • Saewan N, Jimtaisong A (2015) Natural products as photoprotection. J Cosmet Dermatol 14:47–63

    Article  Google Scholar 

  • Saharan V, Pal A (2016) Current and future prospects of chitosan-based nanomaterials in plant protection and growth 43–48

    Google Scholar 

  • Saharan V, Mehrotra A, Khatik R (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  CAS  Google Scholar 

  • Saleh TA (2016) Nanomaterials for pharmaceuticals determination. Bioenergetics 5:226

    Article  CAS  Google Scholar 

  • Sánchez-Machado D, López-Cervantes J, Correa-Murrieta M, Sánchez-Duarte R, Cruz-Flores P, de la Mora-López G (2019) Chitosan. In: Nonvitamin and nonmineral nutritional supplements. Academic Press, pp 485–493

    Google Scholar 

  • Santos JCSD, Barbosa O, Ortiz C, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R (2015) Importance of the support properties for immobilization or purification of enzymes. ChemCatChem 7:2413–2432

    Article  CAS  Google Scholar 

  • Saro**i KS, Indumathi MP, Rajarajeswari GR (2019) Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. Int J Biol Macromol 124:163–174

    Google Scholar 

  • Schoukens G (2019) Bioactive dressings to promote wound healing. In: Advanced textiles for wound care. Elsevier pp 135–167

    Google Scholar 

  • Sedghi R, Shaabani A, Mohammadi Z, Samadi FY, Isaei E (2017) Biocompatible electrospinning chitosan nanofibers: a novel delivery system with superior local cancer therapy. Carbohydr Polym 159:1–10

    Article  CAS  Google Scholar 

  • Serpone N, Dondi D, Albini A (2007) Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorganica Chim Acta 360:794–802

    Article  CAS  Google Scholar 

  • Shagholani H, Ghoreishi SM, Mousazadeh M (2015) Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application. Int J Biol Macromol 78:130–136

    Article  CAS  Google Scholar 

  • Shahid-ul-Islam, Shahid M, Mohammad F (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind Eng Chem Res 52:5245–5260

    Google Scholar 

  • Shahid-ul-Islam, Butola BS, Verma D (2019) Facile synthesis of chitosan-silver nanoparticles onto linen for antibacterial activity and free-radical scavenging textiles. Int J Biol Macromol 133:1134–1141

    Google Scholar 

  • Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24:2558

    Article  CAS  Google Scholar 

  • Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    Article  CAS  Google Scholar 

  • Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75

    Article  Google Scholar 

  • Shoaebargh S, Karimi A (2014) RSM modeling and optimization of glucose oxidase immobilization on TiO2/polyurethane: feasibility study of AO7 decolorization. J Environ Chem Eng 2:1741–1747

    Article  CAS  Google Scholar 

  • Shukla S, Mishra A, Arotiba O, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    Article  CAS  Google Scholar 

  • Sivashankari PR, Prabaharan M (2019) Bioactive nanomaterials/chitosan composites as scaffolds for tissue regeneration. In: Polysaccharide carriers for drug delivery. Elsevier, pp 559–584

    Google Scholar 

  • Song R, Murphy M, Li C, Ting KW, Soo CB, Zheng Z (2018) Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 2018:3117–3145

    Article  Google Scholar 

  • Souza MP, Vaz AFM, Vicente AA, Carneiro-da-cunha MG (2014) Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications 1149–1159

    Google Scholar 

  • Suescun A, Rueda N, Dos Santos JCS, Castillo JJ, Ortiz C, Torres R, Barbosa O, Fernandez-Lafuente R (2015) Immobilization of lipases on glyoxyl-octyl supports: improved stability and reactivation strategies. Process Biochem 50:1211–1217

    Article  CAS  Google Scholar 

  • Suh S, Meng X, Ko S (2016) Proof of concept study for different-sized chitosan nanoparticles as carbon dioxide (CO2) indicators in food quality monitoring. Talanta 161:265–270

    Article  CAS  Google Scholar 

  • Sukhova AA, Gofman IV, Skorik YA (2019) Preparation and properties of chitosan–nanodiamond dispersions and composite films. Diam Relat Mater 98

    Google Scholar 

  • Sun B, Zhang L, Yang L, Zhang F, Norse D, Zhu Z (2012) Agricultural non-point source pollution in China: causes and mitigation measures. Ambio 41:370–379

    Article  CAS  Google Scholar 

  • Suzuki S (2000) Biological effects of chitin, chitosan and their oligosaccharides. Biotherapy 14:965–971

    Google Scholar 

  • Sweidan K, Jaberb A-M, Al-jbourc N, Obaidatd R, Al-Remawi M, Badwan A (2011) Original paper further investigation on the degree of deacetylation of chitosandetermined by potentiometric titration. Excipients Food Chem. 2

    Google Scholar 

  • Tamura A, Hiramoto K, Ino K, Taira N, Nashimoto Y, Shiku H (2019) Genipin crosslinking of electrodeposited chitosan/gelatin hydrogels for cell culture. Chem Lett 48:1178–1180

    Article  CAS  Google Scholar 

  • Threepopnatkul P, Wongnarat C, Intolo W, Suato S, Kulsetthanchalee C (2014) Effect of TiO2 and ZnO on thin film properties of PET/PBS blend for food packaging applications. Energy Procedia 56:102–111

    Article  CAS  Google Scholar 

  • Tokumitsu H, Ichikawa H, Fukumori Y, Block LH (1999) Preparation of gadopentetic acid-loaded chitosan microparticles for gadolinium neutron-capture therapy of cancer by a novel emulsion-droplet coalescence technique. Chem Pharm Bull (Tokyo) 47:838–842

    Article  CAS  Google Scholar 

  • Unsoy G, Khodadust R, Yalcin S, Mutlu P, Gunduz U (2014) Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 62:243–250

    Article  CAS  Google Scholar 

  • Urimi D, Agrawal AK, Kushwah V, Jain S (2019) Polyglutamic acid functionalization of chitosan nanoparticles enhances the therapeutic efficacy of insulin following oral administration. AAPS PharmSciTech 20:131

    Article  CAS  Google Scholar 

  • Varelis P, Melton L, Shahidi F (eds) (2019) Encyclopedia of food chemistry. Elsevier, Amsterdam

    Google Scholar 

  • Vásconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN (2009) Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res Int 42:762–769

    Article  CAS  Google Scholar 

  • Villalba M, Verdasco-Martín CM, dos Santos JCS, Fernandez-Lafuente R, Otero C (2016) Operational stabilities of different chemical derivatives of Novozym 435 in an alcoholysis reaction. Enzyme Microb Technol 90:35–44

    Article  CAS  Google Scholar 

  • Virgen-Ortíz JJ, dos Santos JCS, Ortiz C, Berenguer-Murcia Á, Barbosa O, Rodrigues RC, Fernandez-Lafuente R (2019) Lecitase ultra: a phospholipase with great potential in biocatalysis. Mol Catal 473:110405

    Article  CAS  Google Scholar 

  • Wang G, Xu J-J, Ye L-H, Zhu J-J, Chen H-Y (2002) Highly sensitive sensors based on the immobilization of tyrosinase in chitosan. Bioelectrochemistry 57:33–38

    Article  CAS  Google Scholar 

  • Wang X, Liu X, Zhao C, Ding Y, Xu P (2011) Biodiesel production in packed-bed reactors using lipase-nanoparticle biocomposite. Bioresour Technol 102:6352–6355

    Article  CAS  Google Scholar 

  • Wang S, Zhang C, Qi B, Sui X, Jiang L, Li Y, Wang Z, Feng H, Wang R, Zhang Q (2014) Immobilized alcalase alkaline protease on the magnetic chitosan nanoparticles used for soy protein isolate hydrolysis. Eur Food Res Technol 239:1051–1059

    Article  CAS  Google Scholar 

  • Weber M, Bechelany M (2019) Combining nanoparticles grown by ALD and MOFs for gas separation and catalysis applications. Pure Appl Chem 1–10

    Google Scholar 

  • **ng K, Zhu X, Peng X, Qin S (2015) Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron Sustain Dev 35:569–588

    Article  CAS  Google Scholar 

  • Xu Y, Du Y (2003) Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 250:215–226

    Article  CAS  Google Scholar 

  • Xu J, Dai W, Wang Z, Chen B, Li Z, Fan X (2011) Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen A protects mice against nasopharyngeal colonization by Streptococcus pneumoniae. Clin Vaccine Immunol 18:75–81

    Article  CAS  Google Scholar 

  • Yadav SK, Khan G, Bansal M, Vardhan H, Mishra B (2017) Screening of ionically crosslinked chitosan-tripolyphosphate microspheres using Plackett-Burman factorial design for the treatment of intrapocket infections. Drug Dev Ind Pharm 43:1801–1816

    Article  CAS  Google Scholar 

  • Yadav M, Goswami P, Paritosh K, Kumar M, Pareek N, Vivekanand V (2019) Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresour Bioprocess 6

    Google Scholar 

  • Ye J, Wang S, Lan W, Qin W, Liu Y (2018) Preparation and properties of polylactic acid-tea polyphenol-chitosan composite membranes. Int J Biol Macromol 117:632–639

    Article  CAS  Google Scholar 

  • Youssef AM, El-Sayed SM (2018) Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydr Polym 193:19–27

    Article  CAS  Google Scholar 

  • Yu D, Tian L, Wu H, Wang S, Wang Y, Ma D, Fang X (2010) Ultrasonic irradiation with vibration for biodiesel production from soybean oil by Novozym 435. Process Biochem 45:519–525

    Article  CAS  Google Scholar 

  • Yu C, Guo X, Muzzio M, Seto CT, Sun S (2019) Self-assembly of nanoparticles into two-dimensional arrays for catalytic applications. ChemPhysChem 20:23–30

    Article  CAS  Google Scholar 

  • Zeng J, Du G, Shao X, Feng K-N, Zeng Y (2019) Recombinant polyphenol oxidases for production of theaflavins from tea polyphenols. Int J Biol Macromol 134:139–145

    Article  CAS  Google Scholar 

  • Zhao L-M, Shi L-E, Zhang Z-L, Chen J-M, Shi D-D, Yang J, Tang Z-X (2011) Preparation and application of chitosan nanoparticles and nanofibers. Brazilian J Chem Eng 28:353–362

    Article  CAS  Google Scholar 

  • Zhou C-E, Kan C-W, Sun C, Du J, Xu C (2019) A review of chitosan textile applications. AATCC J Res 6:8–14

    Article  CAS  Google Scholar 

  • Zottel A, Paska AV, Jovčevska I (2019) Nanotechnology meets oncology: nanomaterials in brain cancer research, diagnosis and therapy. Materials (Basel) 12:1588

    Article  CAS  Google Scholar 

  • Feng BH, Peng LF (2012) Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydr Polym 88:576–582

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Brazilian Agencies for Scientific and Technological Development, Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP), project number BP3-0139-00005.01.00/18, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), project number 422942/2016-2, Coordenação de Aperfeiçoamento de Ensino Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Cleiton Sousa dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira, A.L.B. et al. (2021). Chitosan Nanoparticle: Alternative for Sustainable Agriculture. In: Nascimento, R.F.d., Neto, V.d.O.S., Fechine, P.B.A., Freire, P.d.T.C. (eds) Nanomaterials and Nanotechnology. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6056-3_4

Download citation

Publish with us

Policies and ethics

Navigation