Strengthening of Metal Matrix Composites

  • Conference paper
  • First Online:
Advances in Engineering Materials

Abstract

This article presents the physical and metallurgical parameters, which affect the distribution of the discontinuous reinforcements in the matrix of metals or alloys fabricated by liquid state processing. The metal matrix composites (MMC) were developed using stir casting at a speed of 800 rpm, the temperature of 750 °C using a pitched blade stirrer. The strengthening mechanisms have been predicted using the classical continuum model and the factors affecting the load and stress distribution are discussed explicitly. For the prediction of elastic properties, two simple limiting models of the rule of mixtures are generally used. The rule of the mixture has been found most appropriate for the composites with continuous reinforcements. The iso-stress condition has given lesser error in the elastic modulus. In presence of the deformable particles, the composite may undergo extensive plastic deformation. The mathematical models and the empirical relationships suggested in this article will help the researchers and industries to design the discontinuously reinforced composite materials and to control the reinforcement distribution and matrix strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miracle, D. B. (2005). Metal matrix composites-from science to technological significance. Composites Science and Technology, 65, 2526–2540.

    Article  Google Scholar 

  2. Clyne, T. W. (2001). Metal Matrix Composites: Matrices and Processing In A. Mortensen (Ed.), Encyclopedia of materials: Science and technology (pp. 1–14). Elsevier.

    Google Scholar 

  3. Koczak, M. J., & Premkumar, M. K. (1993). Emerging technologies for the in-situ production of MMCs. Journal of Materials Science, 45(1), 44–48.

    Google Scholar 

  4. Tjong, S. C., & Ma, Z. Y. (2000). Microstructural and mechanical characteristics of in-situ metal matrix composites. Materials Science and Engineering A, 29, 49–113.

    Google Scholar 

  5. Tirth, V., & Arabi, A. (2020). Effect of liquid forging pressure on solubility and freezing coefficients of cast aluminum 2124, 2218 and 6063 alloys. Archives of Metallurgy and Materials, 65(1), 357–366. https://doi.org/10.24425/amm.2020.131738.

    Article  Google Scholar 

  6. Broutman, L. J., Krock, R. H. (1967). Modern Composites Materials. Addison-Wesley Publishing Co., Inc.,7(8), 481–486.

    Google Scholar 

  7. Le Roy, G., Embury, J. D., & Edward, G. (1981). A model of ductile fracture based on the nucleation and growth of voids. Acta Metallurgica, 29, 1509–1522.

    Article  Google Scholar 

  8. Arsenault, R. J. (1991). Strengthening of metal matrix composites due to dislocation generation through CTE mismatch. In R. K. Everett, R. J. Arsenault (Eds.), Metal matrix composites: Mechanisms and properties (pp. 101–132). San Diego, CA, USA: Academic Press Inc.

    Google Scholar 

  9. Arsenault, R. J., Wang, L., & Feng, C. R. (1991). Strengthening of composites due to microstructural changes in the matrix. Acta Metallurgica et Materialis, 39, 47–57.

    Article  Google Scholar 

  10. Tirth, V. (2018). Dry sliding wear behavior of 2218 Al-Alloy-Al2O3(TiO2) hybrid composites. Journal of Tribology, 140(2), 021603 1–9.

    Google Scholar 

  11. Tirth, V., Ray, S., Kapoor, M. L. (2009). Effect of squeeze pressure on aging and mechanical properties of AA2218-5 Wt. Pct. Al2O3 (TiO2) Composites, Metallurgical and Materials Transactions A, 40A, 1246–1254.

    Google Scholar 

  12. Tirth, V., Algahtani, A., & Mahmoud, E. R. I. (2018). tribological characterization of stir cast 2218 alloy-5%-Alumina-Titania hybrid microcomposites developed by liquid forging. Materials Expression, 8(6), 475–488.

    Article  Google Scholar 

  13. Ghosh, P. K., & Ray, S. (1986). Effect of porosity and alumina content on the mechanical properties of compocast aluminium alloy-alumina particulate composite. Journal of Materials Science, 21, 1667–1674.

    Article  Google Scholar 

  14. Mileiko, S. T. (1969). The tensile strength and ductility of continuous fiber composite. Journal of Materials Science, 4(11), 974–981.

    Article  Google Scholar 

  15. Aikin, R. M., Jr., & Christodoulou, L. (1991). The role of equiaxed particles on the yield stress of composites. Scripta Metallurgica et Materialia, 25, 9–14.

    Article  Google Scholar 

  16. Prasad, P. R., Ray, S., Gaindhar, J. L., & Kapoor, M. L. (1985). Mechanical poperties of Al-10% Cu alloy particulate composites. Scripta Metallurgica, 19, 1019–1022.

    Article  Google Scholar 

  17. Nath, S. K., Ray, S., & Kapoor, M. L. (2002). A single-particle model for theoretical estimation of tensile strength of two-phase metals. Metals Materials and Processes, 14(3), 241–254.

    Google Scholar 

  18. Aikin, R. M. (1997). The mechanical properties of in-situ composites. Journal of Materials Science, 49(8), 35–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Tirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tirth, V., Gupta, P. (2021). Strengthening of Metal Matrix Composites. In: Sharma, B.P., Rao, G.S., Gupta, S., Gupta, P., Prasad, A. (eds) Advances in Engineering Materials . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-6029-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6029-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6028-0

  • Online ISBN: 978-981-33-6029-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation