BicGenesis: A Method to Identify ESCC Biomarkers Using the Biclustering Approach

  • Conference paper
  • First Online:
Proceedings of International Conference on Big Data, Machine Learning and Applications

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 180))

  • 189 Accesses

Abstract

Biclustering has already been established as an effective tool to study gene expression data toward interesting biomarker findings for a given disease. This paper examines the effectiveness of some prominent biclustering algorithms in extracting biclusters of high biological significance toward the identification of interesting biomarkers. We have chosen Esophageal Squamous Cell Carcinoma (ESCC) as a case for our empirical study and our method called BicGenesis could identify eight genes as possible biomarkers for ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Genecards. https://www.genecards.org/, 31 May 2019

  2. Intogen. https://www.intogen.org/, 31 May 2019

  3. Kemaleren. http://www.kemaleren.com/post/bimax/, 31 May 2019

  4. Malacards. https://malacards.org/, 9 Dec 2018

  5. Yeast saccharomyces cerevisiae cell cycle expression dataset. http://arep.med.harvard.edu/biclustering

  6. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X et al (2000) Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769):503

    Google Scholar 

  7. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci 96(12):6745–6750

    Article  Google Scholar 

  8. Angiulli F, Cesario E, Pizzuti C (2008) Random walk biclustering for microarray data. Inf Sci 178(6):1479–1497

    Article  Google Scholar 

  9. Bergmann S, Ihmels J, Barkai N (2003) Iterative signature algorithm for the analysis of large-scale gene expression data. Phys Rev E 67(3):031902

    Google Scholar 

  10. Bryan K, Cunningham P, Bolshakova N (2006) Application of simulated annealing to the biclustering of gene expression data. IEEE Trans Inf Technol Biomed 10(3):519–525

    Article  Google Scholar 

  11. Cheng Y, Church GM (2000) Biclustering of expression data. In: ISMB, vol 8, pp 93–103

    Google Scholar 

  12. Chi EC, Allen GI, Baraniuk RG (2017) Convex biclustering. Biometrics 73(1):10–19

    Article  MathSciNet  Google Scholar 

  13. Chowdhury HA, Bhattacharyya DK, Kalita JK (2019) (Differential) co-expression analysis of gene expression: a survey of best practices. IEEE/ACM Trans Comput Biol Bioinform 17(4):1154–1173

    Google Scholar 

  14. Clifford RJ, Hu N, Lee MP, Taylor PR (2011) Analysis of gene expression in esophageal squamous cell carcinoma ESCC. NCBI

    Google Scholar 

  15. Coelho GP, de França FO, Von Zuben FJ (2009) Multi-objective biclustering: when non-dominated solutions are not enough. J Math Model Algorithm 8(2):175–202

    Article  MathSciNet  Google Scholar 

  16. Dharan S, Nair AS (2009) Biclustering of gene expression data using reactive greedy randomized adaptive search procedure. BMC Bioinform 10(1):S27

    Google Scholar 

  17. Eren K, Deveci M, Küçüktunç O, Çatalyürek ÜV (2012) A comparative analysis of biclustering algorithms for gene expression data. Brief Bioinform 14(3):279–292

    Article  Google Scholar 

  18. Faith JJ, Driscoll ME, Fusaro VA, Cosgrove EJ, Hayete B, Juhn FS, Schneider SJ, Gardner TS (2007) Many microbe microarrays database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucl Acids Res 36(Suppl 1):D866–D870

    Google Scholar 

  19. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537

    Google Scholar 

  20. Gu J, Liu JS (2008) Bayesian biclustering of gene expression data. BMC Genomics 9(1):S4

    Google Scholar 

  21. Hartigan JA (1972) Direct clustering of a data matrix. J Am Stat Assoc 67(337):123–129

    Article  Google Scholar 

  22. Hochreiter S, Bodenhofer U, Heusel M, Mayr A, Mitterecker A, Kasim A, Khamiakova T, Van Sanden S, Lin D, Talloen W et al (2010) Fabia: factor analysis for bicluster acquisition. Bioinformatics 26(12):1520–1527

    Article  Google Scholar 

  23. Kluger Y, Basri R, Chang JT, Gerstein M (2003) Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res 13(4):703–716

    Article  Google Scholar 

  24. Lazzeroni L, Owen A (2002) Plaid models for gene expression data. Stat Sinica 61–86

    Google Scholar 

  25. Li G, Ma Q, Tang H, Paterson AH, Xu Y (2009) Qubic: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res 37(15):e101–e101

    Article  Google Scholar 

  26. Liu J, Li Z, Hu X, Chen Y (2009) Biclustering of microarray data with mospo based on crowding distance. BMC Bioinform10:S9; BioMed Central (2009)

    Google Scholar 

  27. Lowry DB, Logan TL, Santuari L, Hardtke CS, Richards JH, DeRose-Wilson LJ, McKay JK, Sen S, Juenger TE (2013) Expression quantitative trait locus map** across water availability environments reveals contrasting associations with genomic features in arabidopsis. Plant Cell 25(9):3266–3279

    Article  Google Scholar 

  28. Mandal K, Sarmah R, Bhattacharyya DK (2018) Biomarker identification for cancer disease using biclustering approach: an empirical study. IEEE/ACM Trans Comput Biol Bioinform 16(2):490–509

    Google Scholar 

  29. Mukhopadhyay A, Maulik U, Bandyopadhyay S (2009) A novel coherence measure for discovering scaling biclusters from gene expression data. J Bioinform Comput Biol 7(05):853–868

    Article  Google Scholar 

  30. Murali T, Kasif S (2002) Extracting conserved gene expression motifs from gene expression data. In: Biocomputing 2003. World Scientific, pp 77–88

    Google Scholar 

  31. Network CGA et al (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61

    Google Scholar 

  32. Pontes B, Giráldez R, Aguilar-Ruiz JS (2015) Biclustering on expression data: a review. J Biomed Inform 57:163–180

    Article  Google Scholar 

  33. Pontes Balanza B (2013) Evolutionary biclustering of gene expression data shifting and scaling pattern-based evaluation

    Google Scholar 

  34. Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9):1122–1129

    Article  Google Scholar 

  35. Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(Suppl 1):S136–S144

    Google Scholar 

  36. Yang J, Wang H, Wang W, Yu PS (2005) An improved biclustering method for analyzing gene expression profiles. Int J Artif Intell Tools 14(05):771–789

    Article  Google Scholar 

  37. Yip KY, Cheung DW, Ng MK (2004) HARP: a practical projected clustering algorithm. IEEE Trans Knowl Data Eng 16(11):1387–1397

    Article  Google Scholar 

  38. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4(1)

    Google Scholar 

  39. Zhao L, Zaki MJ (2005) Microcluster: efficient deterministic biclustering of microarray data. IEEE Intell Syst 20(6):40–49

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manaswita Saikia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saikia, M., Bhattacharyya, D.K., Kalita, J.K. (2021). BicGenesis: A Method to Identify ESCC Biomarkers Using the Biclustering Approach. In: Patgiri, R., Bandyopadhyay, S., Balas, V.E. (eds) Proceedings of International Conference on Big Data, Machine Learning and Applications. Lecture Notes in Networks and Systems, vol 180. Springer, Singapore. https://doi.org/10.1007/978-981-33-4788-5_1

Download citation

Publish with us

Policies and ethics

Navigation