Biosurfactant-Producing Bacteria as Potent Scavengers of Petroleum Hydrocarbons

  • Chapter
  • First Online:
Microbiomes and the Global Climate Change

Abstract

Pollution with petroleum hydrocarbons is far-reaching and thus, a problem for the environment as well as human health. The pristine environment has continuously been influenced by anthropogenic activities. Due to the globalization of various industries; their waste materials are being discharged untreated or partially treated into the ecosystem and having adverse impact on different life forms. Petroleum despite being a priceless resource and central to human life on Earth today, extraction and transportation of petroleum products has a number of ecological repercussions. The most consequential effect of petroleum use leads to the environmental pollution, adversely affecting air, soil and water quality. Petroleum product’s spill and leakage are also a major threat to the environment because petroleum products can rigorously destroy the surrounding ecosystem. So, the removal of petroleum products is imperative using eco-friendly methods, and microorganisms are the cheaply available option for doing so. Biosurfactants are extracellular amphiphilic, surface-active compounds produced by microorganisms. These microbially produced multifunctional biomolecules are versatile products having vast applications in various aspects related to clean up of environmental contaminants inclusive of enhanced oil recovery (EOR), controlling oil spills, detoxification and biodegradation of oil contaminated wastewater, soil or sediments. Biosurfactant works by reducing interfacial and surface tension by collecting at the interface of immiscible liquids and thus improve the bioavailability, solubility and subsequent biodegradation of the insoluble or hydrophobic organic compounds. This chapter summarizes the role of biosurfactant-producing bacteria in the bioremediation of petroleum hydrocarbons polluted environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasian F, Lockington R, Mallavarapu M, Naidu R (2015) A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol 176(3):670–699. https://doi.org/10.1007/s12010-015-1603-5

    Article  CAS  PubMed  Google Scholar 

  • Abioye OP, Alonge OA, Ijah UJJ (2009) Biodegradation of crude oil in soil amended with melon shell. AU J Technol 13(1):35–38

    Google Scholar 

  • Abioye OP, Agamuthu P, Abdul Aziz AR (2012) Biodegradation of used motor oil in soil using organic waste amendments. Biotechnol Res Int 2012:587041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams RH, Castillo-Acosta O, Escalante-Espinosa E, Zavala-Cruz J (2011) Natural attenuation and phytoremediation of petroleum hydrocarbon impacted soil in tropical wetland environments. In: Torres LG, Bandala ER (eds) Remediation of soils and aquifers. Nova Publishers, New York, pp 1–24

    Google Scholar 

  • Adesodun JK, Mbagwu JSC (2008) Biodegradation of waste-lubricating petroleum oil in a tropical alfisol as mediated by animal drop**s. Bioresour Technol 99(13):5659–5665

    Article  CAS  PubMed  Google Scholar 

  • Afuwale C, Modi HA (2012) Study of bacterial diversity of crude oil degrading bacteria isolated from crude oil contaminated sites. Life Sci Leafl 6:13–23

    Google Scholar 

  • Al-Hawash B, Dragh A, Li S et al (2018) Principles of microbial degradation of petroleum hydrocarbons in the environment. Egypt J Aquat Res 44:71–76

    Article  Google Scholar 

  • Al-Maamary HM, Kazem HA, Chaichan MT (2017) The impact of oil price fluctuations on common renewable energies in GCC countries. Renew Sust Energ Rev 75:989–1007

    Article  Google Scholar 

  • Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Re/Views Environ Sci Bio/Technol 3(2):117–129

    Article  CAS  Google Scholar 

  • Aparna A, Srinikethan G, Hedge S (2011) Effect of addition of biosurfactant produced by Pseudomonas ssp. on biodegradation of crude oil. Int Proc Chem Biol Environ Eng 6:71–75

    Google Scholar 

  • Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Factories 8(1):1–12

    Article  CAS  Google Scholar 

  • Aşçı Y, Nurbaş M, Açıkel YS (2010) Investigation of sorption/desorption equilibria of heavy metal ions on/from quartz using rhamnolipid biosurfactant. J Environ Manag 91(3):724–731

    Article  CAS  Google Scholar 

  • Assadi MM, Rostamza M, Noohi AS, Levin M, Shahamati M (2004) Rhamnolipid production by Pseudomonas aerugiosa MM1011 from sugar beet molasses. Asian J Microbiol Biotechnol Environ Sci 6(2):203–207

    CAS  Google Scholar 

  • Atlas R, Bragg J (2009) Bioremediation of marine oil spills: when and when not–the Exxon Valdez experience. Microb Biotechnol 2(2):213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balba MT, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32(2):155–164

    Article  CAS  Google Scholar 

  • Banat IM (1993) The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnol Lett 15(6):591–594

    Article  CAS  Google Scholar 

  • Banat IM, Makkar SR, Cameotra SS (2000) Potential commercial application of microbial surfactants. Appl Microbiol Biotechnol 53(5):495–508

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  • Bao M, Pi Y, Wang L, Sun P, Li Y, Cao L (2014) Lipopeptide biosurfactant production bacteria Acinetobacter sp. D3-2 and its biodegradation of crude oil. Environ Sci: Processes Impacts 16(4):897–903

    CAS  Google Scholar 

  • Baraniecki CA, Aislabie J, Foght JM (2002) Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol 43:44–54

    Article  CAS  PubMed  Google Scholar 

  • Bartha R, Bossert I (1984) Petroleum microbiology. In: Atlas RM (ed) The treatment and disposal of petroleum refinery wastes. Macmillan, New York, pp 553–557

    Google Scholar 

  • Begley M, Cotter PD, Hill C, Ross RP (2009) Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for Lan M proteins. Appl Environ Microbiol 75:5451–5460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bej AK, Saul D, Aislabie J (2001) Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Bento FM, Beech IB, Gaylarde CC, Englert GE, Muller IL (2005) Degradation and corrosive activities of fungi in a diesel–mild steel–aqueous system. World J Microbiol Biotechnol 21(2):135–142

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67

    Article  CAS  Google Scholar 

  • Bustamante M, Durán N, Diez MC (2012) Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. J Soil Sci Nutr 12:667–687. https://doi.org/10.4067/S0718-95162012005000024

    Article  Google Scholar 

  • Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82(1):97–116

    Article  CAS  Google Scholar 

  • Cerniglia CE, Freeman JP, Althaus JR, van Baalen C (1983) Metabolism and toxicity of 1-and 2-methylnaphthalene and their derivatives in cyanobacteria. Arch Microbiol 136(3):177–183

    Article  CAS  Google Scholar 

  • Chaerun SK, Tazaki K, Asada R, Kogure K (2004) Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the sea of Japan: isolation and characterization of hydrocarbon-degrading bacteria. Environ Int 30(7):911–922

    Article  CAS  PubMed  Google Scholar 

  • Chaillan F, Chaineau CH, Point V, Saliot A, Oudot J (2006) Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ Pollut 144(1):255–265

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Sharma R, Singh K, Sharma A (2013) Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol 63:417–431

    Article  CAS  Google Scholar 

  • Costa AS, Romao LP, Araujo BR, Lucas SC, Maciel ST, Wisniewski A Jr, Alexandre MR (2012) Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass. Bioresour Technol 105:31–39

    Article  CAS  PubMed  Google Scholar 

  • Darvishi P, Ayatollahi S, Mowla D, Niazi A (2011) Biosurfactant production under extreme environmental conditions by an efficient microbial consortium ERCPPI-2. Colloids Surf B Biointerfaces 84:292–300

    Article  CAS  PubMed  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810

    Article  PubMed  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North East India. Bioresour Technol 98(7):1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Delille D (2000) Response of Antarctic soil bacterial assemblages to contamination by diesel fuel and crude oil. Microb Ecol 40(2):159–168

    Article  CAS  PubMed  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61(1):47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Díez Salvador S, Jover Comas E, Bayona Termens JM, Albaigés Riera J (2007) Prestige oil spill III, the fate of a heavy oil in the marine environment. Environ Sci Technol 41(9):3075–3082

    Article  CAS  Google Scholar 

  • Dombrowski N, Donaho JA, Gutierrez T, Seitz KW, Teske AP, Baker BJ (2016) Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat Microbiol 1(7):1–7

    Article  CAS  Google Scholar 

  • Dong H, **a W, Dong H, She Y, Zhu P, Liang K, Zhang G (2016) Rhamnolipids produced by indigenous Acinetobacter junii from petroleum reservoir and its potential in enhanced oil recovery. Front Microbiol 7:1710

    Article  PubMed  PubMed Central  Google Scholar 

  • Drouin CM, Cooper DG (1992) Biosurfactant and aqueous two phase fermentation. Biotechnol Bioeng 40:86–90

    Article  CAS  PubMed  Google Scholar 

  • Dudley B (2019) BP statistical review of world energy statistical review of world. bp.Com

    Google Scholar 

  • Dyke MV, Couture P, Brauer M, Lee H, Trevors JT (1993) Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol 39(11):1071–1078

    Article  PubMed  Google Scholar 

  • Eckford R, Cook FD, Saul D, Aislabie J, Foght J (2002) Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soils. Appl Environ Microbiol 68(10):5181–5185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sheshtawy HS, El-Tabei AS, Kobisy AS, Doheim MM (2013) Application of biosurfactant produced by Bacillus lichneformis and chemical surfactant in biodegradation of crude oil: part I. Biosci Biotechnol Res Asia 10(2):515–526

    Article  CAS  Google Scholar 

  • Eriksson M, Ka JO, Mohn WW (2001) Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl Environ Microbiol 67(11):5107–5112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhadian M, Vachelard C, Duchez D, Larroche C (2008) In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresour Technol 9:5296–5308

    Article  CAS  Google Scholar 

  • Foght JM (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Micobiol Biotechnol 15:93–120

    CAS  Google Scholar 

  • Franzetti A, Caredda P, La Colla P, Pintus M, Tamburini E, Papacchini M, Bestetti G (2009) Cultural factors affecting biosurfactant production by Gordonia sp. BS29. Int Biodeterior Biodegradation 63(7):943–947

    Article  CAS  Google Scholar 

  • Fritsche W, Hofrichter M (2005) Aerobic degradation of recalcitrant organic compounds by microorganisms. In: Environmental biotechnology concepts and applications. Wiley, Weinheim

    Google Scholar 

  • Froehner S, Dombroski LF, Machado KS, Fernandes CS, Bessa M (2012) Estimation of bioavailability of polycyclic aromatic hydrocarbons in river sediments. Int J Environ Sci Technol 9(3):409–416

    Article  CAS  Google Scholar 

  • Fuentes S, Barra B, Caporaso JG, Seeger M (2015) From rare to dominant: a fine-tuned soil bacterial bloom during petroleum hydrocarbon bioremediation. Appl Environ Microbiol 82:888–896. https://doi.org/10.1128/AEM.02625-15

    Article  CAS  PubMed  Google Scholar 

  • Gavrilescu M (2010) Environmental biotechnology: achievements, opportunities and challenges. Dyn Biochem Process Biotechnol Mol Biol 4(1):1–36

    Google Scholar 

  • Gharaei-Fathabad E (2011) Biosurfactants in pharmaceutical industry: a mini-review. Am J Drug Discov Dev 1(1):58–69

    Article  Google Scholar 

  • Ghribi D, Ellouze-Chaabouni S (2011) Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol Res Int 2011:653654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gibb A, Chu A, Wong RCK, Goodman RH (2001) Bioremediation kinetics of crude oil at 5 C. J Environ Eng 127(9):818–824

    Article  CAS  Google Scholar 

  • Gong Z, Wilke BM, Alef K, Li P (2005) Influence of soil moisture on sunflower oil extraction of polycyclic aromatic hydrocarbons from a manufactured gas plant soil. Sci Total Environ 343(1–3):51–59

    Article  CAS  PubMed  Google Scholar 

  • Gudiña EJ, Fernandes EC, Rodrigues AI, Teixeira JA, Rodrigues LR (2015a) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microbiol 6:1–7

    Google Scholar 

  • Gudiña EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR (2015b) Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour Technol 177:87–93

    Article  PubMed  CAS  Google Scholar 

  • Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15(3):205–214

    Article  CAS  PubMed  Google Scholar 

  • Harekrushna S, Kumar DC (2012) A review on: bioremediation. Int J Res Chem Environ 2(1):13–21

    Google Scholar 

  • Hausmann R, Syldatk C (2014) Types and classification of microbial surfactants. In: Biosurfactants: production and utilization—processes, technologies, and economics, 1st edn. CRC Press, Boca Raton, p 159

    Google Scholar 

  • Hausmann R, Syldatk C (2015) Types and classifcation of microbial surfactants. In: Biosurfactants. Production and utilization-processes, technologies, and economics. CRC Press, Boca Raton. https://doi.org/10.1201/b17599-3

    Chapter  Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208

    Article  CAS  PubMed  Google Scholar 

  • Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4(3):173–182

    Article  CAS  PubMed  Google Scholar 

  • Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22(5):459–473

    Article  CAS  Google Scholar 

  • Hendrickx B, Junca H, Vosahlova J, Lindner A, Ruegg I, Bucheli-Witschel M, Faber F, Egli T, Mau M, Pieper DH, Top EM, Dejonghe W, Bastiaens L, Springael D (2006) Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. J Microbiol Methods 64(2):250–265

    Article  CAS  PubMed  Google Scholar 

  • Hickman ZA, Reid BJ (2008) The co-application of earthworms (Dendrobaena Veneta) and compost to increase hydrocarbon losses from diesel contaminated soils. Environ Int 34(7):1016–1022

    Article  CAS  PubMed  Google Scholar 

  • Hou N, Zhang N, Jia T, Sun Y, Dai Y, Wang Q, Li C (2018) Biodegradation of phenanthrene by biodemulsifier-producing strain Achromobacter sp. LH-1 and the study on its metabolisms and fermentation kinetics. Ecotoxicol Environ Saf 163:205–214

    Article  CAS  PubMed  Google Scholar 

  • Huesemann MH, Hausmann TS, Fortman TJ (2004) Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation 15(4):261–274

    Article  CAS  PubMed  Google Scholar 

  • Ijah UJJ, Antai SP (2003) The potential use of chicken-drop micro-organisms for oil spill remediation. Environmentalist 23(1):89–95

    Article  Google Scholar 

  • Inakollu S, Hung HC, Shreve GS (2004) Biosurfactant enhancement of microbial degradation of various structural classes of hydrocarbon in mixed waste systems. Environ Eng Sci 21:463–469. https://doi.org/10.1089/1092875041358467

    Article  CAS  Google Scholar 

  • Jada A, Salou M (2002) Effects of the asphaltene and resin contents of the bitumens on the water-bitumen interface properties. J Pet Sci Eng 33:185–193

    Article  CAS  Google Scholar 

  • Jadhav M, Kalme S, Tamboli D, Govindwar S (2011) Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. J Basic Microbiol 51(4):385–396

    Article  CAS  PubMed  Google Scholar 

  • Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F (2013) Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J 7:885–895

    Article  CAS  PubMed  Google Scholar 

  • Jain PK, Gupta VK, Gaur RK, Lowry M, Jaroli DP, Chauhan UK (2011) Bioremediation of petroleum oil contaminated soil and water. Res J Environ Toxicol 5(1):1–26

    Article  CAS  Google Scholar 

  • Jennings EM, Tanner RS (2000) Biosurfactant-producing bacteria found in contaminated and uncontaminated soils. In: Proceedings of the 2000 conference on hazardous waste research, vol 306, pp 299–306

    Google Scholar 

  • Jha SS, Joshi SJ, SJ G (2016) Lipopeptide production by Bacillus subtilis R1 and its possible applications. Braz J Microbiol 47(4):955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ** HM, Kim JM, Lee HJ, Madsen EL, Jeon CO (2012) Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. Environ Sci Technol 46(14):7731–7740

    Article  CAS  PubMed  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133(1):71–84

    Article  CAS  PubMed  Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9(3):215–288

    Article  CAS  Google Scholar 

  • Kang SW, Kim YB, Shin JD, Kim EK (2010) Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Appl Biochem Biotechnol 160(3):780–790

    Article  CAS  PubMed  Google Scholar 

  • Kauppi S (2011) Bioremediation of diesel oil contaminated soil and water. Master’thesis, University of Helsinki, Lathi, Findland

    Google Scholar 

  • Kleindienst S, Paul JH, Joye SB (2015) Using dispersants after oil spills: impacts on the composition and activity of microbial communities. Nat Rev Microbiol 13(6):388–396

    Article  CAS  PubMed  Google Scholar 

  • Kosaric N, Cairns WL, Gray NC (1987) Biosurfactants and biotechnology. M. Dekker, New York

    Google Scholar 

  • Krishnani KK, Kathiravan V, Meena KK, Sarkar B, Kumar S, Brahmane MP, Kailasam NKM (2019) Bioremediation of aquatic toxicants: application of multi-omic approaches. Narendra Publishing House, Delhi

    Google Scholar 

  • Kucharski J, Tomkiel M, Boros E, Wyszkowska J (2010) The effect of soil contamination with diesel oil and petrol on the nitrification process. J Elem 15(1):111–118

    Google Scholar 

  • Kuyukina MS, Ivshina IB, Baeva TA, Kochina OA, Gein SV, Chereshnev VA (2015) Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. New Biotechnol 32(6):559–568

    Article  CAS  Google Scholar 

  • Labud V, Garcia C, Hernandez T (2007) Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 66(10):1863–1871

    Article  CAS  PubMed  Google Scholar 

  • Lai CC, Huang YC, Wei YH, Chang JS (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167:609–614

    Article  CAS  PubMed  Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie Van Leeuwenhoek 74(1–3):59–70

    Article  CAS  PubMed  Google Scholar 

  • Leahy JH, Colwell R (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lea-Smith DJ, Biller SJ, Davey MP, Cotton CA, Sepulveda BMP, Turchyn AV, Howe CJ (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci 112(44):13591–13596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Kim MK, Singleton I, Goodfellow M, Lee ST (2006) Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. J Appl Microbiol 100(2):325–333

    Article  CAS  PubMed  Google Scholar 

  • Li XW, Liu ZP (2002) Microbial biodegradation of petroleum hydrocarbon. Acta Microbiol Sin 42:764–767

    CAS  Google Scholar 

  • Li AH, Xu MY, Sun W, Sun GP (2011) Rhamnolipid production by Pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Appl Biochem Biotechnol 163(5):600–611

    Article  CAS  PubMed  Google Scholar 

  • Liu JF, Mbadinga SM, Yang SZ, Gu JD, Mu BZ (2015) Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 16(3):4814–4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macaulay BM, Rees D (2014) Bioremediation of oil spills: a review of challenges for research advancement. Ann Environ Sci 8:9–37

    Google Scholar 

  • Madsen EL (2002) Report on bioavailability of chemical wastes with respect to the potential for soil bioremediation. Department of Microbiology, Cornell University, Ithaca

    Google Scholar 

  • Marchut-Mikolajczyk O, Drożdżyński P, Pietrzyk D, Antczak T (2018) Biosurfactant production and hydrocarbon degradation activity of endophytic bacteria isolated from Chelidonium majus L. Microb Cell Factories 17(1):1–9

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (1999) Biodegradation of diesel oil by cold-adapted microorganisms in presence of sodium dodecyl sulfate. Chemosphere 38(15):3463–3472

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (2001a) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5–6):650–663

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (2001b) Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area. Appl Environ Microbiol 67(7):3127–3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69(6):3085–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Mackelprang R (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6(9):1715–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Tarouco PC, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118

    CAS  PubMed  Google Scholar 

  • Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Pept Sci 104(3):129–147

    Article  CAS  Google Scholar 

  • Morikawa M, Ito M, Imanaka T (1992) Isolation of a new surfactin producer Bacillus pumilus A-1, and cloning and nucleotide sequence of the regulator gene, psf-1. J Ferment Bioeng 74(5):255–261

    Article  CAS  Google Scholar 

  • Msmg N, Msmd D (2012) Review paper on—parameters affecting bioremedaition. Int J Life Sci Pharm Res 2(3):77–80

    Google Scholar 

  • Mulligan CN, Gibbs BF (2004) Types, production and applications of biosurfactants. Proc Indian Natl Sci Acad Part B 70(1):31–56

    CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60(1–4):193–207

    Article  Google Scholar 

  • Nerurkar AS, Hingurao KS, Suthar HG (2009) Bioemulsifiers from marine microorganisms

    Google Scholar 

  • Neu TR, Härtner T, Poralla K (1990) Surface active properties of viscosin: a peptidolipid antibiotic. Appl Microbiol Biotechnol 32(5):518–520

    Article  CAS  Google Scholar 

  • Neu TR, Dengler T, Jann B, Poralla K (1992) Structural studies of an emulsion-stabilizing exopolysaccharide produced by an adhesive, hydrophobic Rhodococcus strain. Microbiology 138(12):2531–2537

    CAS  Google Scholar 

  • Nie Y, Liang JL, Fang H, Tang YQ, Wu XL (2014) Characterization of a CYP153 alkane hydroxylase gene in a gram-positive Dietzia sp. DQ12-45-1b and its “team role” with alkW1 in alkane degradation. Appl Microbiol Biotechnol 98(1):163–173

    Article  CAS  PubMed  Google Scholar 

  • Northcott GL, Jones KC (2000) Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment. Environ Pollut 108(1):19–43

    Article  CAS  PubMed  Google Scholar 

  • Obayori OS, Ilori MO, Adebusoye SA, Oyetibo GO, Omotayo AE, Amund OO (2009) Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1. World J Microbiol Biotechnol 25:1615–1623

    Article  CAS  Google Scholar 

  • Ohadi M, Dehghannoudeh G, Shakibaie M, Banat IM, Pournamdari M, Forootanfar H (2017) Isolation, characterization, and optimization of biosurfactant production by an oil-degrading Acinetobacter junii B6 isolated from an Iranian oil excavation site. Biocatal Agric Biotechnol 12:1–9

    Article  Google Scholar 

  • Oleszczuk P (2009) Application of three methods used for the evaluation of polycyclic aromatic hydrocarbons (PAHs) bioaccessibility for sewage sludge composting. Bioresour Technol 100(1):413–420

    Article  CAS  PubMed  Google Scholar 

  • Onwurah INE, Ogugua VN, Onyike NB, Ochonogor AE, Otitoju OF (2007) Crude oil spills in the environment, effects and some innovative clean-up biotechnologies. Int J Environ Res 1(4):307–320

    CAS  Google Scholar 

  • Overholt WA, Marks KP, Romero IC, Hollander DJ, Snell TW, Kostka JE (2015) Hydrocarbon degrading bacteria exhibit a species specific response to dispersed oil while moderating ecotoxicity. Appl Environ Microbiol 82:518–527

    Article  PubMed  CAS  Google Scholar 

  • Park JA, Hur JM, Jang BK, Son BS (2001) Evaluation of compost addition and its effect on biodegradation of diesel-oil in contaminated soil composting. J Ind Eng Chem 7(3):127–136

    CAS  Google Scholar 

  • Parra-Barraza H, Hernández-Montiel D, Lizardi J, Hernández J, Urbina RH, Valdez MA (2003) The zeta potential and surface properties of asphaltenes obtained with different crude oil/n-heptane proportions. Fuel 82(8):869–874

    Article  CAS  Google Scholar 

  • Patowary K, Patowary R, Kalita MC, Deka S (2017) Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Front Microbiol 8:279

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira JF, Gudiña EJ, Costa R, Vitorino R, Teixeira JA, Coutinho JA, Rodrigues LR (2013) Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111:259–268

    Article  CAS  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51(5):553–563

    Article  CAS  PubMed  Google Scholar 

  • Puglisi E, Cappa F, Fragoulis G, Trevisan M, Del Re AA (2007) Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere 67(3):548–556

    Article  CAS  PubMed  Google Scholar 

  • Rahman KSM, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat IM (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour Technol 85(3):257–261

    Article  CAS  PubMed  Google Scholar 

  • Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90:159–168

    Article  CAS  PubMed  Google Scholar 

  • Rivers AR, Sharma S, Tringe SG, Martin J, Joye SB, Moran MA (2013) Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater horizon oil spill. ISME J 7(12):2315–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490

    Article  CAS  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2014) Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol 27:191–194

    Article  CAS  PubMed  Google Scholar 

  • Ruhal R, Kataria R, Choudhury B (2013) Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 6(5):493–502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saharan BS, Sahu RK, Sharma D (2011) A review on biosurfactants: fermenta- tion, current developments and perspectives. Genet Eng Biotechnol J 1:1–14

    Google Scholar 

  • Salleh AB, Ghazali FM, Rahman RNZA, Basri M (2003) Bioremediation of petroleum hydrocarbon pollution. Indian J Biotechnol 2:411–425

    CAS  Google Scholar 

  • Sanket KG, Yagnik BN (2013) Current trend and potential for microbial biosurfactants. Asian J Exp Biol Sci 4(1):1–8

    Google Scholar 

  • Sarkar P, Roy A, Pal S, Mohapatra B, Kazy SK, Maiti MK, Sar P (2017) Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation. Bioresour Technol 242:15–27

    Article  CAS  PubMed  Google Scholar 

  • Schein A, Scott JA, Mos L, Hodson PV (2009) Oil dispersion increases the apparent bioavailability and toxicity of diesel to rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 28(3):595–602

    Article  CAS  PubMed  Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54(4):809–818

    Article  CAS  Google Scholar 

  • Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust 34:714–724

    Article  CAS  Google Scholar 

  • Sharma D (2016) Biosurfactants in food, part of the springer briefs in food, health, and nutrition book series (BRIEFSFOOD). Springer, Berlin, pp 1–19. https://doi.org/10.1007/978-3-319-39415-2

    Book  Google Scholar 

  • Shi K, Liu ZX, Xu HC, Xue JL, Liu YY, Wu YN, **ao XF, Gao Y, Liu B (2018) Degradation characteristics and microbial community change of marine petroleum-degrading bacteria in different degradation environments. Pet Sci Technol 36:1361–1367

    Article  CAS  Google Scholar 

  • Sihag S, Pathak H, Jaroli DP (2014) Factors affecting the rate of biodegradation of polyaromatic hydrocarbons. Int J Pure Appl Biosci 2(3):185–202

    Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Mol Biol Rev 59(2):201–222

    CAS  Google Scholar 

  • Soberón-Chávez G, Maier RM (2011) Biosurfactants: a general overview. Biosurfactants, pp 1–11

    Google Scholar 

  • Speight JG (2007) The chemistry and technology of petroleum, vol 114. CRC, Taylor and Francis, Boca Raton, FL

    Google Scholar 

  • Szulc A, Ambrożewicz D, Sydow M, Ławniczak Ł, Piotrowska-Cyplik A, Marecik R, Chrzanowski Ł (2014) The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies. J Environ Manag 132:121–128

    Article  CAS  Google Scholar 

  • Tao K, Liu X, Chen X, Hu X, Cao L, Yuan X (2017) Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis. Bioresour Technol 224:327–332. https://doi.org/10.1016/j.biortech.2016.10.073

    Article  CAS  PubMed  Google Scholar 

  • Tremblay J, Yergeau E, Fortin N, Cobanli S, Elias M, King TL, Greer CW (2017) Chemical dispersants enhance the activity of oil-and gas condensate-degrading marine bacteria. ISME J 11(12):2793–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • US Environmental Protection Agency (USEPA) (2011) Crude and petroleum products

    Google Scholar 

  • Van RM (2011) Environmental degradation of petroleum hydrocarbons. Utrecht University, Binnenstad

    Google Scholar 

  • Van Bogaert INA, Ciesielska K, Devreese B, Soetaert W (2014) Microbial synthesis and application. Biosurfactants: production and utilization-processes. Technol Econ 159:19

    Google Scholar 

  • Van Dorst J, Siciliano SD, Winsley T, Snape I, Ferrari BC (2014) Bacterial targets as potential indicators of diesel fuel toxicity in subantarctic soils. Appl Environ Microbiol 80(13):4021–4033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varjani SJ (2014) Hydrocarbon degrading and biosurfactants (bioemulsifiers) producing bacteria from petroleum oil wells. Ph.D. thesis. Kadi Sarva Vishwavidyalaya

    Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286. https://doi.org/10.1016/j.biortech.2016.10.037

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ, Gnansounou E (2017) Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresour Technol 245:1258–1265. https://doi.org/10.1016/j.biortech.2017.08.028

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ, Upasani VN (2016) Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 222:195–201

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ, Rana DP, Jain AK, Bateja S, Upasani VN (2015) Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegradation 103:116–124

    Article  CAS  Google Scholar 

  • Wang C, Liu X, Guo J, Lv Y, Li Y (2018) Biodegradation of marine oil spill residues using aboriginal bacterial consortium based on Penglai 19-3 oil spill accident. Chin Ecotoxicol Environ Saf 159:20–27. https://doi.org/10.1016/j.ecoenv.2018.04.059

    Article  CAS  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Article  CAS  PubMed  Google Scholar 

  • Wilkes H, Buckel W, Golding BT, Rabus R (2016) Metabolism of hydrocarbons in n-Alkane utilizing anaerobic bacteria. J Mol Microbiol Biotechnol 26:138–151

    CAS  PubMed  Google Scholar 

  • Xu X, Zhai Z, Li H, Wang Q, Han X, Yu H (2017) Synergetic effect of bio-photocatalytic hybrid system: g-C3N4 and Acinetobacter sp. JLS1 for enhanced degradation of C16 alkane. Chem Eng J 323:520–529

    Article  CAS  Google Scholar 

  • Xue J, Yu Y, Bai Y, Wang L, Wu Y (2015) Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: a review. Curr Microbiol 71:220–228. https://doi.org/10.1007/s00284-015-0825-7

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61(5):1706–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wang J, Liao J, **e S, Huang Y (2015) Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas. Appl Microbiol Biotechnol 99(4):1935–1946

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xu D, Zhu C, Lundaa T, Scherr KE (2012) Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains. Chem Eng J 209:138–146

    Article  CAS  Google Scholar 

  • Zhu X, Venosa AD, Suidan MT (2004) Literature review on the use of commercial bioremediation agents for cleanup of oil-contaminated estuarine environments. EPA/600/R-04/075

    Google Scholar 

  • Zou C, Wang M, **ng Y, Lan G, Ge T, Yan X, Gu T (2014) Characterization and optimization of biosurfactants produced by Acinetobacter baylyi ZJ2 isolated from crude oil-contaminated soil sample toward microbial enhanced oil recovery applications. Biochem Eng J 90:49–58

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqui, Z., Anas, M., Khatoon, K., Malik, A. (2021). Biosurfactant-Producing Bacteria as Potent Scavengers of Petroleum Hydrocarbons. In: Lone, S.A., Malik, A. (eds) Microbiomes and the Global Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-33-4508-9_17

Download citation

Publish with us

Policies and ethics

Navigation