Multi-objective Particle Swarm Optimization: Theory, Literature Review, and Application in Feature Selection for Medical Diagnosis

  • Chapter
  • First Online:
Evolutionary Machine Learning Techniques

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

Disease prediction has a vital role in health informatics. The early detection of diseases assists in taking preventive steps and more functional treatment. Incorporating intelligent classification models and data analysis methods has intrinsic impact on converting such trivial, row data into worthy useful knowledge. Due to the explosion in computational and medical technologies, we observe an explosion in the volume of health- and medical-related data. Medical datasets are high-dimensional datasets, which make the process of building a classification model that searches for optimal set of features a hard, yet more challenging task. Hence, this chapter introduces a fundamental class of optimization known as the multi-objective evolutionary algorithms (MOEA) for optimization, which handles the feature selection for classification in medical applications. The chapter presents an introduction to multi-objective optimization and their related mathematical models. Furthermore, this chapter investigates the utilization of a well-regarded multi-objective particle swarm optimization (MOPSO) as wrapper-based feature selection method, in order to detect the presence or absence of different types of diseases. Therefore, the performance of MOPSO and its behavior are examined by comparing it with other well-regarded MOEAs on several medical datasets. The experimental results on most of the medical datasets show that the MOPSO algorithm outperforms other algorithms such as non-dominated sorting genetic algorithm (NSGA-II) and multi-objective evolutionary algorithm based on decomposition (MOEA/D) in terms of classification accuracy and minimum number of features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbass HA (2002) An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif Intell Med 25(3):265–281

    Article  Google Scholar 

  2. Ahmed S, Mafarja M, Faris H, Aljarah I (2018) Feature selection using salp swarm algorithm with chaos. In: Proceedings of the 2nd international conference on intelligent systems, metaheuristics & swarm intelligence. ACM, pp 65–69

    Google Scholar 

  3. Aljarah I, Al-Zoubi AM, Faris H, Hassonah MA, Mirjalili S, Saadeh H (2018) Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cogn Comput 1–18

    Google Scholar 

  4. Aljarah I, Faris H, Mirjalili S, Al-Madi N, Sheta A, Mafarja M (2019) Evolving neural networks using bird swarm algorithm for data classification and regression applications. Clust Comput 1–29

    Google Scholar 

  5. Aljarah I, Ludwig SA (2013) Towards a scalable intrusion detection system based on parallel pso clustering using mapreduce. In: Proceedings of the 15th annual conference companion on Genetic and evolutionary computation. ACM, pp 169–170

    Google Scholar 

  6. Aljarah I, Mafarja M, Heidari AA, Faris H, Zhang Y, Mirjalili S (2018) Asynchronous accelerating multi-leader salp chains for feature selection. Appl Soft Comput 71:964–979

    Article  Google Scholar 

  7. Alnemer LM, Rajab L, Aljarah I (2016) Conformal prediction technique to predict breast cancer survivability. Int J Adv Sci Technol 96:1–10

    Article  Google Scholar 

  8. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci 96(12):6745–6750

    Article  Google Scholar 

  9. Berner ES (2007) Clinical decision support systems, vol 233. Springer

    Google Scholar 

  10. Blum AL, Langley P (1997) Selection of relevant features and examples in machine learning. Artif Intell 97(1–2):245–271

    Article  MathSciNet  Google Scholar 

  11. Bramer M (2007) Principles of data mining, vol 180. Springer

    Google Scholar 

  12. Coello CAC, Lechuga MS (2002) Mopso: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 congress on evolutionary computation. CEC’02 (Cat. No. 02TH8600), vol 2. pp 1051–1056, IEEE

    Google Scholar 

  13. Coello CA, Lamont GB, Van Veldhuizen DA et al (2007) Evolutionary algorithms for solving multi-objective problems, vol 5. Springer

    Google Scholar 

  14. Corne DW, Knowles JD, Oates MJ (2000) The pareto envelope-based selection algorithm for multiobjective optimization. In: International conference on parallel problem solving from nature. Springer, pp 839–848

    Google Scholar 

  15. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: International conference on parallel problem solving from nature. Springer, pp 849–858

    Google Scholar 

  16. Deb K, Kalyanmoy D (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York, NY, USA

    MATH  Google Scholar 

  17. Dua D, Efi KT (2017) UCI machine learning repository

    Google Scholar 

  18. Dioşan L, Andreica A (2015) Multi-objective breast cancer classification by using multi-expression programming. Appl Intell 43(3):499–511

    Article  Google Scholar 

  19. Dos Santos BC, Nobre CN, Zárate LE (2018) Multi-objective genetic algorithm for feature selection in a protein function prediction context. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–6

    Google Scholar 

  20. Dubey AK, Gupta U, Jain S (2016) Analysis of k-means clustering approach on the breast cancer wisconsin dataset. Int J Comput Assist Radiol Surg 11(11):2033–2047

    Article  Google Scholar 

  21. Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97(457):77–87

    Article  MathSciNet  Google Scholar 

  22. Dussaut JS, Vidal PJ, Ponzoni I, Olivera AC (2018) Comparing multiobjective evolutionary algorithms for cancer data microarray feature selection. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8

    Google Scholar 

  23. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Micro machine and human science, 1995. MHS’95. Proceedings of the Sixth International Symposium on. IEEE, pp 39–43

    Google Scholar 

  24. Faris H, Aljarah I, Al-Betar MA, Mirjalili S (2018) Grey wolf optimizer: a review of recent variants and applications. Neural Comput Appl, pp 1–23

    Google Scholar 

  25. Faris H, Aljarah I, Al-Shboul B (2016) A hybrid approach based on particle swarm optimization and random forests for e-mail spam filtering. In: International Conference on Computational Collective Intelligence. Springer, pp 498–508

    Google Scholar 

  26. Faris H, Hassonah MA, Al-Zoubi AM, Mirjalili S, Aljarah I (2018) A multi-verse optimizer approach for feature selection and optimizing svm parameters based on a robust system architecture. Neural Comput Appl 30(8):2355–2369

    Article  Google Scholar 

  27. Faris H, Mafarja MM, Heidari AA, Aljarah I, Al-Zoubi AM, Mirjalili S, Fujita H (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl-Based Syst 154:43–67

    Article  Google Scholar 

  28. Faris H, Mirjalili S, Aljarah I (2019) Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme. Int J Mach Learn Cybern 1–20

    Google Scholar 

  29. Friedman N, Linial M, Nachman I, Pe’Er D (2000) Using bayesian networks to analyze expression data. J Comput Biol 7(3–4):601–620

    Article  Google Scholar 

  30. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537

    Article  Google Scholar 

  31. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier

    Google Scholar 

  32. Haque MR, Islam MM, Iqbal H, Reza MS, Hasan MK (2018) Performance evaluation of random forests and artificial neural networks for the classification of liver disorder. In: 2018 international conference on computer, communication, chemical, material and electronic engineering (IC4ME2). IEEE pp 1–5

    Google Scholar 

  33. Holland JH et al (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press

    Google Scholar 

  34. Ibrahim AO, Shamsuddin SM, Saleh AY, Abdelmaboud A, Ali A (2015) Intelligent multi-objective classifier for breast cancer diagnosis based on multilayer perceptron neural network and differential evolution. In: 2015 international conference on computing, control, networking, electronics and embedded systems engineering (ICCNEEE). IEEE pp 422–427

    Google Scholar 

  35. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: 1997 IEEE international conference on systems, man, and cybernetics. Computational cybernetics and simulation, vol 5. IEEE pp 4104–4108

    Google Scholar 

  36. Knowles J, Corne D (1999) The pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimisation. In: Congress on Evolutionary Computation (CEC99), vol 1, pp 98–105

    Google Scholar 

  37. Kong Q, Wang D, Wang Y, ** Y, Jiang B (2018) Multi-objective neural network-based diagnostic model of prostatic cancer. **tong Gongcheng Lilun Yu Shijian/Syst Eng Theory Pract 38(2):532–544. cited By 0

    Google Scholar 

  38. Kuhn M, Johnson K (2013) Applied predictive modeling, vol 26. Springer

    Google Scholar 

  39. Kumar S, Katyal S (2018) Effective analysis and diagnosis of liver disorder by data mining. In: 2018 international conference on inventive research in computing applications (ICIRCA). IEEE pp 1047–1051

    Google Scholar 

  40. Kurgan LA, Cios KJ, Tadeusiewicz R, Ogiela M, Goodenday LS (2001) Knowledge discovery approach to automated cardiac spect diagnosis. Artif Intell Med 23(2):149–169

    Article  Google Scholar 

  41. Kursawe F (1990) A variant of evolution strategies for vector optimization. In: International conference on parallel problem solving from nature. Springer, pp 193–197

    Google Scholar 

  42. Li X, Yin M (2013) Multiobjective binary biogeography based optimization for feature selection using gene expression data. IEEE Trans NanoBioscience 12(4):343–353

    Article  Google Scholar 

  43. Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO (2009) Suitability of dysphonia measurements for telemonitoring of parkinson’s disease. IEEE Trans Bio-Med Eng 56(4):1015

    Article  Google Scholar 

  44. Mafarja M, Aljarah I, Faris H, Hammouri AI, Al-Zoubi AM, Mirjalili S (2019) Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst Appl 117:267–286

    Article  Google Scholar 

  45. Mafarja M, Aljarah I, Heidari AA, Faris H, Fournier-Viger P, Li X, Mirjalili S (2018) Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowl-Based Syst 161:185–204

    Article  Google Scholar 

  46. Mafarja M, Aljarah I, Heidari AA, Hammouri AI, Faris H, A-Zoubi AM, Mirjalili S (2018) Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowl-Based Syst 145:25–45

    Article  Google Scholar 

  47. Mafarja M, Heidari AA, Faris H, Mirjalili S, Aljarah I (2020) Dragonfly algorithm: theory, literature review, and application in feature selection. In: Nature-inspired optimizers. Springer, pp 47–67

    Google Scholar 

  48. Mafarja MM, Mirjalili S (2018) Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection. Soft Comput 1–17

    Google Scholar 

  49. Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl Intell 46(1):79–95

    Article  Google Scholar 

  50. Mirjalili S, Lewis A (2013) S-shaped versus v-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput 9:1–14

    Article  Google Scholar 

  51. Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119

    Article  Google Scholar 

  52. Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I (2018) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell 48(4):805–820

    Article  Google Scholar 

  53. Mitra S, Banka H (2006) Multi-objective evolutionary biclustering of gene expression data. Pattern Recognit 39(12):2464–2477

    Article  Google Scholar 

  54. Mohemmed AW, Zhang M (2008) Evaluation of particle swarm optimization based centroid classifier with different distance metrics. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence). IEEE, pp 2929–2932

    Google Scholar 

  55. Mugambi EM, Hunter A (2003) Multi-objective genetic programming optimization of decision trees for classifying medical data. In: International conference on knowledge-based and intelligent information and engineering systems. Springer, pp 293–299

    Google Scholar 

  56. Murata T, Ishibuchi H (1995) Moga: multi-objective genetic algorithms. IEEE Int Conf Evol Comput 1:289–294

    Google Scholar 

  57. rey Horn J, Nafpliotis N, Goldberg DE (1994) A niched pareto genetic algorithm for multiobjective optimization. In: Proceedings of the first IEEE conference on evolutionary computation, IEEE world congress on computational intelligence, vol 1. Citeseer, pp 82–87

    Google Scholar 

  58. Sahoo A, Chandra S (2017) Multi-objective grey wolf optimizer for improved cervix lesion classification. Appl Soft Comput 52:64–80

    Article  Google Scholar 

  59. Santhosh J, Bhatia M, Sahu S, Anand S (2004) Quantitative eeg analysis for assessment to plana task in amyotrophic lateral sclerosis patients: a study of executive functions (planning) in als patients. Cogn Brain Res 22(1):59–66

    Article  Google Scholar 

  60. Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the first international conference on genetic algorithms and their applications (1985) Lawrence Erlbaum Associates. Publishers, Inc., p 1985

    Google Scholar 

  61. Shahbeig S, Rahideh A, Helfroush MS, Kazemi K (2018) Gene selection from large-scale gene expression data based on fuzzy interactive multi-objective binary optimization for medical diagnosis. Biocybern Biomed Eng 38(2):313–328

    Article  Google Scholar 

  62. Sarah S, Hossam F, Ibrahim A, Seyedali M, Ajith A (2018) Evolutionary static and dynamic clustering algorithms based on multi-verse optimizer. Eng Appl Artif Intell 72:54–66

    Article  Google Scholar 

  63. Sohrabi MK, Tajik A (2017) Multi-objective feature selection for warfarin dose prediction. Comput Biol Chem 69:126–133

    Article  Google Scholar 

  64. Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248

    Article  Google Scholar 

  65. Turing AM, Lerner A, (1987) Aaai 1991 spring symposium series reports. 12(4): Winter 1991, 31–37 aaai 1993 fall symposium reports. 15(1): Spring, (1994) 14–17 aaai 1994 spring symposium series. Intelligence 1(49):8

    Google Scholar 

  66. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver press

    Google Scholar 

  67. Zhang Q, Li H (2007) Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedali Mirjalili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Habib, M., Aljarah, I., Faris, H., Mirjalili, S. (2020). Multi-objective Particle Swarm Optimization: Theory, Literature Review, and Application in Feature Selection for Medical Diagnosis. In: Mirjalili, S., Faris, H., Aljarah, I. (eds) Evolutionary Machine Learning Techniques. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9990-0_9

Download citation

Publish with us

Policies and ethics

Navigation