Tools and Techniques for Nitrogen Management in Cereals

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Nitrogen is indispensable for highly productive agriculture. A number of sources supply nitrogen to growing crops. These sources include synthetic fertilizers, atmospheric deposition and fixation by soil microorganisms, and manures. It is estimated that about half of the total nitrogen fertilizers are applied to three cereals, namely, wheat, rice, and maize. However, only 33% of the total nitrogen applied could be converted to harvestable yields. Most of the nitrogen applied is lost to the environment, which contributes to the emission of greenhouse gases. The nitrogen losses have huge impact on environmental pollution and farm economics. Despite grave concerns, the increase in nitrogen use would probably continue to meet the food demands of the growing population. We have analyzed different approaches used to study the global trends for nitrogen use and nitrogen productivities for three major cereals, i.e., wheat, rice, and maize. These approaches include total N input, use of fertilizer N, N use efficiencies and agronomic efficiency for N, apparent N recovery, N surplus, and partial factor productivity for N. Additionally, we have also discussed the importance of development of nitrogen dilution curves for cereals under different environmental conditions and at regional and global scales. Use of these N performance indicators could help in improving the N productivities in cereals at regional, national, and global levels. We have explored the possible routes of N loss and modern agronomic techniques to improve nitrogen use efficiencies in cereal production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 174.06
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad S, Hasanuzzaman M (2012) Integrated effect of plant density, N rates and irrigation regimes on the biomass production, N content, PAR use efficiencies and water productivity of rice under irrigated semiarid environment. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40(1):201–211

    Article  CAS  Google Scholar 

  • Ahmad S, Ahmad A, Zia-ul-Haq M, Ali H, Khaliq T, Anjum MA, Khan MA, Hussain A, Hoogenboom G (2009) Resources use efficiency of field grown transplanted rice (Oryza sativa L.) under irrigated semiarid environment. J Food Agric Environ 7(2):487–492

    Google Scholar 

  • Ahmad S, Ahmad A, Soler CMT, Ali H, Zia-Ul-Haq M, Anothai J, Hussain A, Hoogenboom G, Hasanuzzaman M (2012a) Application of the CSM-CERES-Rice model for evaluation of plant density and nitrogen management of fine transplanted rice for an irrigated semiarid environment. Precis Agric 13(2):200–218

    Article  Google Scholar 

  • Ahmad S, Ali H, Ismail M, Shahzad MI, Nadeem M, Anjum MA, Zia-Ul-Haq M, Firdous N, Khan MA (2012b) Radiation and nitrogen use efficiencies of C3 winter cereals to nitrogen split application. Pak J Bot 44(1):139–149

    Google Scholar 

  • Ahmad S, Ahmad A, Ali H, Hussain A, Garcia y Garcia A, Khan MA, Zia-Ul-Haq M, Hasanuzzaman M, Hoogenboom G (2013) Application of the CSM-CERES-Rice model for evaluation of plant density and irrigation management of transplanted rice for an irrigated semiarid environment. Irrig Sci 31(3):491–506

    Article  Google Scholar 

  • Ahmad S, Ali H, Atique-ur-Rehman KRJ, Ahmad W, Fatima Z, Abbas G, Irfan M, Ali H, Khan MA, Hasanuzzaman M (2015) Measuring leaf area of winter cereals by different techniques: a comparison. Pak J Life Soc Sci 13(2):117–125

    Google Scholar 

  • Ahmad S, Hussain S, Fatima Z, Abbas G, Atique-ur-Rehman KMA, Younis H, Naz S, Sohail M, Ajmal M, Abbas N, Akhtar M, Rauf A, Khan M, Ali Z, Hassan M, Rizwan M, Bajwa RS, Ajmal A, Naz S, Ali H, Khan AA, Ali M, Sarwar G, Khan MA, Hasanuzzaman M (2016a) Application of DSSAT model for sowing date management of C4 summer cereals for fodder and grain crops under irrigated arid environment. Pak J Life Soc Sci 14(2):104–114

    Google Scholar 

  • Ahmad S, Ali H, Farooq U, Khan SU, Atique-ur-Rehman SN, Shahzad AN, Dogan H, Hussain S, Sultan MT, Waheed A, Zia-ul-Haq M, Hussain K, Khan MA (2016b) Improving nitrogen and radiation-use-efficiencies of C4 summer cereals by split nitrogen applications under irrigated arid environment. Turk J Agric For 40(2):280–289

    Article  CAS  Google Scholar 

  • Ahmad S, Atique-ur-Rehman EM, Fatima Z, Kan M, Ahmed M (2018) Agricultural land-use change of major field crops in Pakistan (1961–2014). Sci Technol Dev 37(3):113–121

    Google Scholar 

  • Ata-Ul-Karim ST, Liu X, Lu Z, Zheng H, Cao W, Zhu Y (2017) Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crop Res 201:32–40

    Article  Google Scholar 

  • Bandaogo AA, Fofana B, Youl S (2018) Fertilizer deep placement as one way of increasing nitrogen use efficiency and grain yield in West African irrigated rice systems. In: Improving the profitability, sustainability and efficiency of nutrients through site specific fertilizer recommendations in West Africa agro-ecosystems. Springer, Cham, pp 291–310

    Chapter  Google Scholar 

  • Cai S, Pittelkow CM, Zhao X, Wang S (2018) Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits. J Clean Prod 195:289–300

    Article  CAS  Google Scholar 

  • Cameron KC, Di HJ, Moir JL (2013) Nitrogen losses from the soil/plant system: a review. Ann Appl Biol 162(2):145–173

    Article  CAS  Google Scholar 

  • Cao Q, Miao Y, LiF GX, Liu B, Lu D, Chen X (2017a) Develo** a new crop circle active canopy sensor-based precision nitrogen management strategy for winter wheat in North China Plain. Precis Agric 18(1):2–18

    Article  Google Scholar 

  • Cao Y, Sun H, Liu Y, Fu Z, Chen G, Zou G, Zhou S (2017b) Reducing N losses through surface runoff from rice-wheat rotation by improving fertilizer management. Environ Sci Pollut Res 24(5):4841–4850

    Article  CAS  Google Scholar 

  • Cherry KA, Shepherd M, Withers PJA, Mooney SJ (2008) Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: a review of methods. Sci Total Environ 406(1–2):1–23

    Article  CAS  PubMed  Google Scholar 

  • Colaço AF, Bramley RGV (2018) Do crop sensors promote improved nitrogen management in grain crops? Field Crop Res 218:126–140

    Article  Google Scholar 

  • Conant RT, Berdanier AB, Grace PR (2013) Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Global Biogeochem Cycles 27:558–566

    Article  CAS  Google Scholar 

  • del Pilar Muschietti-Piana M, Cipriotti PA, Urricariet S, Peralta NR, Niborski M (2018) Using site-specific nitrogen management in rainfed corn to reduce the risk of nitrate leaching. Agric Water Manag 199:61–70

    Article  Google Scholar 

  • Dempsey RJ, Slaton NA, Norman R, Roberts TL (2017) Ammonia volatilization, rice yield, and nitrogen uptake responses to simulated rainfall and urease inhibitor. Agron J 109(1):363–377

    Article  CAS  Google Scholar 

  • Dong D, Feng Q, McGrouther K, Yang M, Wang H, Wu W (2015) Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. J Soils Sediments 15(1):153–162

    Article  CAS  Google Scholar 

  • Dwyer L, Stewart D, Gregorich E, Anderson A, Ma B, Tollenaar M (1995) Quantifying the nonlinearity in chlorophyll meter response to corn leaf nitrogen concentration. Can J Plant Sci 75:179–182

    Article  Google Scholar 

  • Fang Q, Yu Q, Wang E, Chen Y, Zhang G, Wang J, Li L (2006) Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat–maize double crop** system in the North China Plain. Plant Soil 284(1–2):335–350

    Article  CAS  Google Scholar 

  • FAOSTAT (2018) Food and Agriculture Organization Statistics. Available at http://www.fao.org/faostat/en/#data. Accessed 31 Jul 2018

  • Fatima Z, Abbas Q, Khan A, Hussain S, Ali MA, Abbas G, Younis H, Naz S, Ismail M, Shahzad MI, Nadeem M, Farooq U, Khan SU, Javed K, Khan AA, Ahmed M, Khan MA, Ahmad S (2018) Resource-use-efficiencies of C3 and C4 cereals under split nitrogen regimes. Agronomy 8(5):69. https://doi.org/10.3390/agronomy8050069

    Article  CAS  Google Scholar 

  • Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc B 368:20130164

    Article  CAS  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Hansen P, Schjoerring J (2003) Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ 86:542–553

    Article  Google Scholar 

  • Hatfield JL, Prueger JH (2004) Nitrogen over-use, under-use, and efficiency “new directions for a diverse planet”. Proceedings of the 4th International Crop Science Congress, 26 Sep – 1 Oct 2004, Brisbane, Australia

    Google Scholar 

  • He Y, Lehndorff E, Amelung W, Wassmann R, Alberto MC, von Unold G, Siemens J (2017) Drainage and leaching losses of nitrogen and dissolved organic carbon after introducing maize into a continuous paddy-rice crop rotation. Agric Ecosyst Environ 249:91–100

    Article  CAS  Google Scholar 

  • He T, Liu D, Yuan J, Ni K, Zaman M, Luo J, Lindsey S, Ding W (2018) A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field. Agric Ecosyst Environ 264:44–53

    Article  CAS  Google Scholar 

  • Heffer P, Gruère A, Roberts T (2017) Assessment of Fertilizer Use by Crop at the Global Level 2014-2014/15 (International Fertilizer Industry Association and International Plant Nutrition Institute)

    Google Scholar 

  • Hofmeier M, Roelcke M, Han Y, Lan T, Bergmann H, Böhm D, Cai Z, Nieder R (2015) Nitrogen management in a rice–wheat system in the Taihu Region: recommendations based on field experiments and surveys. Agric Ecosyst Environ 209:60–73

    Article  CAS  Google Scholar 

  • Hussain M, Ahmad S, Hussain S, Lal R, Ul-Allah S, Nawaz A (2018) Rice in saline soils: physiology, biochemistry, genetics and management. Adv Agron 148:231–287

    Article  Google Scholar 

  • Islam SM, Gaihre YK, Biswas JC, Jahan MS, Singh U, Adhikary SK, Satter MA, Saleque MA (2018) Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: fate of nitrogen and grain yield. Agric Water Manag 196:144–153

    Article  Google Scholar 

  • Jones L, Milne A, Hall J, Mills G, Provins A, Christie M (2018) Valuing improvements in biodiversity due to controls on atmospheric nitrogen pollution. Ecol Econ 152:358–366

    Article  Google Scholar 

  • Kaur H, Ram H (2017) Nitrogen management of wheat cultivars for higher productivity-a review. J Appl Nat Sci 9(1):133–143

    Article  CAS  Google Scholar 

  • Ladha JK, Tirol-Padre A, Reddy CK, Cassman KG, Verma S, Powlson DS, van Kessel C, Richter DB, Chakraborty D, Pathak Global H (2016) Nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systems. Sci Rep 6:19355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Lu J, Hou W, Pan Y, Wang Y, Khan MR, Ren T, Cong R, Li X (2017) Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double crop** of late rice using controlled release urea. Environ Sci Pollut Res 24(12):11722–11733

    Article  CAS  Google Scholar 

  • Li P, Lu J, Wang Y, Wang S, Hussain S, Ren T, Cong R, Li X (2018) Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agric Ecosyst Environ 251:78–87

    Article  CAS  Google Scholar 

  • Liao L, Shao XH, Ji R, Wen T, Xu J (2015) Ammonia volatilization from direct seeded later-rice fields as affected by irrigation and nitrogen managements. Int J Agric Biol 17(3):582–588

    Article  CAS  Google Scholar 

  • Liu J, You L, Amini M, Obersteiner M, Herrero M, Zehnder AJB, Yang H (2010) A high-resolution assessment on global nitrogen flows in cropland. Proc Natl Acad Sci USA 107(17):8035–8040

    Article  CAS  PubMed  Google Scholar 

  • Liu TQ, Fan DJ, Zhang XX, Chen J, Li CF, Cao CG (2015) Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crop Res 184:80–90

    Article  Google Scholar 

  • Lu C, Tian H (2017) Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst Sci Data 9(1):181–192

    Article  Google Scholar 

  • Nath CP, Das TK, Rana KS, Bhattacharyya R, Pathak H, Paul S, Meena MC, Singh SB (2017) Greenhouse gases emission, soil organic carbon and wheat yield as affected by tillage systems and nitrogen management practices. Arch Agron Soil Sci 63(12):1644–1660

    Article  CAS  Google Scholar 

  • Naz MY, Sulaiman SA (2016) Slow release coating remedy for nitrogen loss from conventional urea: a review. J Control Release 225:109–120

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus A, Hoogmoed M, Sadras V (2017) Closing the yield gap for wheat and canola through an adjusted nitrogen nutrition index. Better Crop Plant Food 101:16–18

    Google Scholar 

  • Oenema O, Pietrzak S (2002) Nutrient management in food production: Achieving agronomic and environmental targets. Ambio 31(2):159–168

    Article  PubMed  Google Scholar 

  • Payne RJ, Dise NB, Field CD, Dore AJ, Caporn SJ, Stevens CJ (2017) Nitrogen deposition and plant biodiversity: past, present, and future. Front Ecol Environ 15(8):431–436

    Article  Google Scholar 

  • Piekkielek W, Fox R (1992) Use of a chlorophyll meter to predict sidedress nitrogen. Agron J 84:59–65

    Article  Google Scholar 

  • Plošek L, Elbl J, Lošák T, Kužel S, Kintl A, Juřička D, Kynický J, Martensson A, Brtnický M (2017) Leaching of mineral nitrogen in the soil influenced by addition of compost and N-mineral fertilizer. Acta Agric Scand Sect B Soil Plant Sci 67(7):607–614

    Google Scholar 

  • Purba J, Sharma RK, Jat ML, Thind HS, Gupta RK, Chaudhary OP, Chandna P, Khurana HS, Kumar A, Uppal HS, Uppal RK (2015) Site-specific fertilizer nitrogen management in irrigated transplanted rice (Oryza sativa) using an optical sensor. Precis Agric 16(4):455–475

    Article  Google Scholar 

  • Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125

    Article  Google Scholar 

  • Ropera MM, Gupta VVSR (2016) Enhancing non-symbiotic N2fixation in agriculture. Open Agric J 10:7–27

    Article  CAS  Google Scholar 

  • Sommer SG, Schjoerring JK, Denmead OT (2004) Ammonia emission from mineral fertilizers and fertilized crops. Adv Agron 82(5577622):82008–82004

    Google Scholar 

  • Spiertz JHJ (2009) Nitrogen, sustainable agriculture and food security: a review. In: Sustainable agriculture. Springer, Dordrecht, pp 635–651

    Chapter  Google Scholar 

  • Stuart D, Schewe RL, McDermott M (2014) Reducing nitrogen fertilizer application as a climate change mitigation strategy: Understanding farmer decision-making and potential barriers to change in the US. Land Use Policy 36:210–218

    Article  Google Scholar 

  • Sultana SR, Ali A, Ahmad A, Mubeen M, Zia-Ul-Haq M, Ahmad S, Ercisli S, Jaafar HZE (2014) Normalized difference vegetation index as a tool for wheat yield estimation: a case study from Faisalabad, Pakistan. Sci World J 725326:1–8. https://doi.org/10.1155/2014/725326

    Article  CAS  Google Scholar 

  • Sun H, Zhang H, Powlson D, Min J, Shi W (2015) Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine. Field Crops Research 173:1–7

    Article  Google Scholar 

  • Sun H, Zhang H, Min J, Feng Y, Shi W (2016) Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Paddy Water Environ 14(1):105–111

    Article  Google Scholar 

  • Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, Van Grinsven H, Grizzetti B (eds) (2011) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, Cambridge

    Google Scholar 

  • Thind HS, Kumar A, Choudhary OP, Gupta RK, Vashistha M (2017) Site-specific fertilizer nitrogen management using optical sensor in irrigated wheat in the Northwestern India. Agric Res 6(2):159–168

    Article  Google Scholar 

  • Tripathi R, Nayak AK, Raja R, Shahid M, Mohanty S, Lal B, Gautam P, Panda BB, Kumar A, Sahoo RN (2017) Site-specific nitrogen management in rice using remote sensing and geostatistics. Commun Soil Sci Plant Anal 48(10):1154–1166

    Article  CAS  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Woodley AL, Drury CF, Reynolds WD, Tan CS, Yang XM, Oloya TO (2018) Long-term crop** effects on partitioning of water flow and nitrate loss between surface runoff and tile drainage. J Environ Qual 47(4):820–829

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Peng S, Yang S, Wang W (2012) Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements. Agric Water Manag 104:184–192

    Article  Google Scholar 

  • Xue L, Yu Y, Yang L (2014) Maintaining yields and reducing nitrogen loss in rice–wheat rotation system in Taihu Lake region with proper fertilizer management. Environ Res Lett 9(11):115010

    Article  CAS  Google Scholar 

  • Yang YY, Toor GS (2016) δ15N and δ18O reveal the sources of nitrate-nitrogen in urban residential storm water runoff. Environ Sci Technol 50(6):2881–2889

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Zhang M, Tian Y, Zhao M, Zeng K, Zhang B, Zhao M, Yin B (2018a) Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice crop** system. Field Crop Res 216:158–164

    Article  Google Scholar 

  • Yao Y, Zhang M, Tian Y, Zhao M, Zhang B, Zeng K, Zhao M, Yin B (2018b) Urea deep placement in combination with Azolla for reducing nitrogen loss and improving fertilizer nitrogen recovery in rice field. Field Crop Res 218:141–149

    Article  Google Scholar 

  • Yu-Hua TIAN, Bin YIN, Lin-Zhang YANG, Shi-Xue YIN, Zhao-Liang ZHU (2007) Nitrogen runoff and leaching losses during rice-wheat rotations in Taihu Lake region, China. Pedosphere 17(4):445–456

    Article  Google Scholar 

  • Zhang Y, Liu H, Guo Z, Zhang C, Sheng J, Chen L, Luo Y, Zheng J (2018) Direct-seeded rice increases nitrogen runoff losses in southeastern China. Agric Ecosyst Environ 251:149–157

    Article  CAS  Google Scholar 

  • Zhou L, Chen G, Miao Y, Zhang H, Chen Z, Xu L, Guo L (2017) Evaluating a Crop Circle active sensor-based in-season nitrogen management algorithm in different winter wheat crop** systems. Adv Anim Biosci 8(2):364–367

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahzad, A.N., Ahmad, S. (2019). Tools and Techniques for Nitrogen Management in Cereals. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9783-8_7

Download citation

Publish with us

Policies and ethics

Navigation