Schwann Cells as Crucial Players in Diabetic Neuropathy

  • Chapter
  • First Online:
Myelin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1190))

Abstract

Schwann cells maintain peripheral nerve structure and function by ensheathment of unmyelinated axons, myelination of myelinated axons, and secretion of neurotrophic factors, and these cells also play a crucial role in the pathogenic mechanisms of diabetic neuropathy. A decrease in unmyelinated and small myelinated axons appeared earlier than a decrease in large myelinated fibers in diabetic neuropathy. Electron microscopic studies of human diabetic neuropathy demonstrated edematous cell cytoplasm, aggregates of glycogen particles, and hyperplasia of the surrounding basal lamina in Schwann cells. Diabetic conditions also induces metabolic disorders, such as polyol pathway hyperactivity, activation of protein kinase C, and increased advanced glycosylation end products in Schwann cells, followed by the depletion of neurotrophic factor production.

Cell transplantation using progenitor or stem cells is expected to cure diabetic neuropathy. Many studies demonstrated that the paracrine effect of abundant secreted factors from transplanted stem cells was crucial for the success of cell transplantation in diabetic neuropathy. Transplantation of progenitor or stem cells in diabetic animal models ameliorated impaired nerve conduction velocity, nerve blood flow, sensory disorders, and intraepidermal nerve fiber density, with an increase of myelin thickness. The supernatant from cultured dental pulp stem cells increased the proliferation and production of myelin-related protein in Schwann cells, suggesting that Schwann cells is the main target of cell transplantation for diabetic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Apfel SC, Schwartz S, Adornato BT, Freeman R, Biton V, Rendell M, Vinik A, Giuliani M, Stevens JC, Barbano R, Dyck PJ (2000) Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: a randomized controlled trial. rhNGF Clinical Investigator Group. JAMA 284:2215–2221

    Article  CAS  PubMed  Google Scholar 

  • Bischoff A (1980) Morphology of diabetic neuropathy. Horm Metab Res Suppl 9:18–28

    CAS  PubMed  Google Scholar 

  • Bunge RP (1993) Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr Opin Neurobiol 3:805–809

    Article  CAS  PubMed  Google Scholar 

  • Dey I, Midha N, Singh G, Forsyth A, Walsh SK, Singh B, Kumar R, Toth C, Midha R (2013) Diabetic Schwann cells suffer from nerve growth factor and neurotrophin-3 underproduction and poor associability with axons. Glia 61:1990–1999

    Article  PubMed  Google Scholar 

  • Dyck PJ, Lais A, Karnes JL, O’Brien P, Rizza R (1986) Fiber loss is primary and multifocal in sural nerves in diabetic polyneuropathy. Ann Neurol 19:425–439

    Article  CAS  PubMed  Google Scholar 

  • Han JW, Choi D, Lee MY, Huh YH, Yoon YS (2016) Bone marrow-derived mesenchymal stem cells improve diabetic neuropathy by direct modulation of both angiogenesis and myelination in peripheral nerves. Cell Transplant 25:313–326

    Article  PubMed  Google Scholar 

  • Hao W, Tashiro S, Hasegawa T, Sato Y, Kobayashi T, Tando T, Katsuyama E, Fujie A, Watanabe R, Morita M, Miyamoto K, Morioka H, Nakamura M, Matsumoto M, Amizuka N, Toyama Y, Miyamoto T (2015) Hyperglycemia promotes Schwann cell de-differentiation and de-myelination via sorbitol accumulation and igf1 protein down-regulation. J Biol Chem 290:17106–17115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa T, Kosaki A, Shimizu K, Matsubara H, Mori Y, Masaki H, Toyoda N, Inoue-Shibata M, Nishikawa M, Iwasaka T (2006) Amelioration of diabetic peripheral neuropathy by implantation of hematopoietic mononuclear cells in streptozotocin-induced diabetic rats. Exp Neurol 199:274–280

    Article  CAS  PubMed  Google Scholar 

  • Hata M, Omi M, Kobayashi Y, Nakamura N, Tosaki T, Miyabe M, Kojima N, Kubo K, Ozawa S, Maeda H, Tanaka Y, Matsubara T, Naruse K (2015) Transplantation of cultured dental pulp stem cells into the skeletal muscles ameliorated diabetic polyneuropathy: therapeutic plausibility of freshly isolated and cryopreserved dental pulp stem cells. Stem Cell Res Ther 6:162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Himeno T, Kamiya H, Naruse K, Cheng Z, Ito S, Kondo M, Okawa T, Fujiya A, Kato J, Suzuki H (2013) Mesenchymal stem cell-like cells derived from mouse induced pluripotent stem cells ameliorate diabetic polyneuropathy in mice. Biomed Res Int 2013:259187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Himeno T, Kamiya H, Naruse K, Cheng Z, Ito S, Shibata T, Kondo M, Kato J, Okawa T, Fujiya A (2015) Angioblast derived from ES cells construct blood vessels and ameliorate diabetic polyneuropathy in mice. J Diabetes Res 2015:257230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong JO, Kim MO, Kim H, Lee MY, Kim SW, Ii M, Lee JU, Lee J, Choi YJ, Cho HJ, Lee N, Silver M, Wecker A, Kim DW, Yoon YS (2009) Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation 119:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682

    Article  CAS  PubMed  Google Scholar 

  • ** P, Zhang X, Wu Y, Li L, Yin Q, Zheng L, Zhang H, Sun C (2010) Streptozotocin-induced diabetic rat-derived bone marrow mesenchymal stem cells have impaired abilities in proliferation, paracrine, antiapoptosis, and myogenic differentiation. Transplant Proc 42(7):2745–2752

    Article  CAS  PubMed  Google Scholar 

  • Kamiya H, Nakamura J, Hamada Y, Nakashima E, Naruse K, Kato K, Yasuda Y, Hotta N (2003) Polyol pathway and protein kinase C activity of rat Schwannoma cells. Diabetes Metab Res Rev 19:131–139

    Article  CAS  PubMed  Google Scholar 

  • Kern TS, Engerman RL (1982) Immunohistochemical distribution of aldose reductase. Histochem J 14:507–515

    Article  CAS  PubMed  Google Scholar 

  • Kondo M, Kamiya H, Himeno T, Naruse K, Nakashima E, Watarai A, Shibata T, Tosaki T, Kato J, Okawa T (2015) Therapeutic efficacy of bone marrow-derived mononuclear cells in diabetic polyneuropathy is impaired with aging or diabetes. J Diabetes Investig 6:140–149

    Article  CAS  PubMed  Google Scholar 

  • Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ (2004) Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53:195–199

    Article  CAS  PubMed  Google Scholar 

  • Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marbán L, Mendizabal A, Johnston PV (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik RA, Newrick PG, Sharma AK, Jennings A, Ah-See AK, Mayhew TM, Jakubowski J, Boulton AJ, Ward JD (1989) Microangiopathy in human diabetic neuropathy: relationship between capillary abnormalities and the severity of neuropathy. Diabetologia 32:92–102

    Article  CAS  PubMed  Google Scholar 

  • Malik RA, Tesfaye S, Newrick PG, Walker D, Rajbhandari SM, Siddique I, Sharma AK, Boulton AJ, King RH, Thomas PK, Ward JD (2005) Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia 48:578–585

    Article  CAS  PubMed  Google Scholar 

  • Mizisin AP (2014) Mechanisms of diabetic neuropathy: Schwann cells. Handb Clin Neurol 126:401–428

    Article  PubMed  Google Scholar 

  • Nakamura N, Naruse K, Kobayashi Y, Matsuki T, Hamada Y, Nakashima E, Kamiya H, Hata M, Nishikawa T, Enomoto A, Takahashi M, Murohara T, Matsubara T, Oiso Y, Nakamura J (2011) High glucose impairs the proliferation and increases the apoptosis of endothelial progenitor cells by suppression of Akt. J Diabetes Investig 2:262–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naruse K, Hamada Y, Nakashima E, Kato K, Mizubayashi R, Kamiya H, Yuzawa Y, Matsuo S, Murohara T, Matsubara T, Oiso Y, Nakamura J (2005) Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy. Diabetes 54:1823–1828

    Article  CAS  PubMed  Google Scholar 

  • Naruse K, Sato J, Funakubo M, Hata M, Nakamura N, Kobayashi Y, Kamiya H, Shibata T, Kondo M, Himeno T, Matsubara T, Oiso Y, Nakamura J (2011) Transplantation of bone marrow-derived mononuclear cells improves mechanical hyperalgesia, cold allodynia and nerve function in diabetic neuropathy. PLoS One 6:e27458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obrosova IG, Fathallah L, Stevens MJ (2001) Taurine counteracts oxidative stress and nerve growth factor deficit in early experimental diabetic neuropathy. Exp Neurol 172:211–219

    Article  CAS  PubMed  Google Scholar 

  • Ohi T, Saita K, Furukawa S, Ohta M, Hayashi K, Matsukura S (1998) Therapeutic effects of aldose reductase inhibitor on experimental diabetic neuropathy through synthesis/secretion of nerve growth factor. Exp Neurol 151:215–220

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi A, Harada M, Tateishi J, Ogata J, Kawanami S (1983) Segmental demyelination and remyelination in lumbar spinal roots of patients dying with diabetes mellitus. Ann Neurol 13:541–548

    Article  CAS  PubMed  Google Scholar 

  • Okawa T, Kamiya H, Himeno T, Kato J, Seino Y, Fujiya A, Kondo M, Tsunekawa S, Naruse K, Hamada Y, Ozaki N, Cheng Z, Kito T, Suzuki H, Ito S, Oiso Y, Nakamura J, Isobe KI (2013) Transplantation of neural crest-like cells derived from induced pluripotent stem cells improves diabetic polyneuropathy in mice. Cell Transplant 22:1767–1783

    Article  PubMed  Google Scholar 

  • Omi M, Hata M, Nakamura N, Miyabe M, Ozawa S, Nukada H, Tsukamoto M, Sango K, Himeno T, Kamiya H, Nakamura J, Takebe J, Matsubara T, Naruse K (2017) Transplantation of dental pulp stem cells improves long-term diabetic polyneuropathy together with improvement of nerve morphometrical evaluation. Stem Cell Res Ther 8:279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perin EC, Willerson JT, Pepine CJ, Henry TD, Ellis SG, Zhao DX, Silva GV, Lai D, Thomas JD, Kronenberg MW (2012) Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307:1717–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryle C, Leow CK, Donaghy M (1997) Nonenzymatic glycation of peripheral and central nervous system proteins in experimental diabetes mellitus. Muscle Nerve 20:577–584

    Article  CAS  PubMed  Google Scholar 

  • Said G, Slama G, Selva J (1983) Progressive centripetal degeneration of axons in small fibre diabetic polyneuropathy. Brain 106(Pt 4):791–807

    Article  PubMed  Google Scholar 

  • Sango K, Yanagisawa H, Kawakami E, Takaku S, Ajiki K, Watabe K (2011) Spontaneously immortalized Schwann cells from adult Fischer rat as a valuable tool for exploring neuron-Schwann cell interactions. J Neurosci Res 89:898–908

    Article  CAS  PubMed  Google Scholar 

  • Sharghi-Namini S, Turmaine M, Meier C, Sahni V, Umehara F, Jessen KR, Mirsky R (2006) The structural and functional integrity of peripheral nerves depends on the glial-derived signal desert hedgehog. J Neurosci 26:6364–6376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, Nakamura N, Ota K, Tosaki T, Matsuki T, Nakashima E, Hamada Y, Oiso Y, Nakamura J (2008) Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 57:3099–3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sima AA, Bril V, Nathaniel V, McEwen TA, Brown MB, Lattimer SA, Greene DA (1988) Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. N Engl J Med 319:548–555

    Article  CAS  PubMed  Google Scholar 

  • Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918

    Article  PubMed  Google Scholar 

  • Takaku S, Yako H, Niimi N, Akamine T, Kawanami D, Utsunomiya K, Sango K (2018) Establishment of a myelinating co-culture system with a motor neuron-like cell line NSC-34 and an adult rat Schwann cell line IFRS1. Histochem Cell Biol 149:537–543

    Article  CAS  PubMed  Google Scholar 

  • Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–435

    Article  PubMed  Google Scholar 

  • Tesfaye S, Harris N, Jakubowski JJ, Mody C, Wilson RM, Rennie IG, Ward JD (1993) Impaired blood flow and arterio-venous shunting in human diabetic neuropathy: a novel technique of nerve photography and fluorescein angiography. Diabetologia 36:1266–1274

    Article  CAS  PubMed  Google Scholar 

  • Thomas PK, Lascelles RG (1965) Schwann-cell abnormalities in diabetic neuropathy. Lancet 1:1355–1357

    Article  CAS  PubMed  Google Scholar 

  • Tosaki T, Kamiya H, Yasuda Y, Naruse K, Kato K, Kozakae M, Nakamura N, Shibata T, Hamada Y, Nakashima E, Oiso Y, Nakamura J (2008) Reduced NGF secretion by Schwann cells under the high glucose condition decreases neurite outgrowth of DRG neurons. Exp Neurol 213:381–387

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto M, Sango K, Niimi N, Yanagisawa H, Watabe K, Utsunomiya K (2015) Upregulation of galectin-3 in immortalized Schwann cells IFRS1 under diabetic conditions. Neurosci Res 92:80–85

    Article  CAS  PubMed  Google Scholar 

  • Vlassara H, Brownlee M, Cerami A (1983) Excessive nonenzymatic glycosylation of peripheral and central nervous system myelin components in diabetic rats. Diabetes 32:670–674

    Article  CAS  PubMed  Google Scholar 

  • **a N, Xu JM, Zhao N, Zhao QS, Li M, Cheng ZF (2015) Human mesenchymal stem cells improve the neurodegeneration of femoral nerve in a diabetic foot ulceration rats. Neurosci Lett 597:84–89

    Article  CAS  PubMed  Google Scholar 

  • Yagihashi S, Matsunaga M (1979) Ultrastructural pathology of peripheral nerves in patients with diabetic neuropathy. Tohoku J Exp Med 129:357–366

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi S, Ogasawara S, Mizukami H, Yajima N, Wada R, Sugawara A, Yagihashi S (2008) Correction of protein kinase C activity and macrophage migration in peripheral nerve by pioglitazone, peroxisome proliferator activated-gamma-ligand, in insulin-deficient diabetic rats. J Neurochem 104:491–499

    CAS  PubMed  Google Scholar 

  • Yasuda H, Dyck PJ (1987) Abnormalities of endoneurial microvessels and sural nerve pathology in diabetic neuropathy. Neurology 37:20–28

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Naruse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naruse, K. (2019). Schwann Cells as Crucial Players in Diabetic Neuropathy. In: Sango, K., Yamauchi, J., Ogata, T., Susuki, K. (eds) Myelin. Advances in Experimental Medicine and Biology, vol 1190. Springer, Singapore. https://doi.org/10.1007/978-981-32-9636-7_22

Download citation

Publish with us

Policies and ethics

Navigation