Upconversion Luminescent Materials: Properties and Luminescence Mechanisms

  • Chapter
  • First Online:
Principles and Applications of Up-converting Phosphor Technology
  • 597 Accesses

Abstract

The upconversion (UC) luminescent materials typically refer to the materials doped with rare earth (RE) ions or transition metal ions as the luminescence centers, among which the lanthanides ions possess superior UC efficiency. UC luminescence (UCL) is a kind of anti-Stokes process, which absorbs two or more photons with a low energy while emits one photon with a high energy. The energy difference between the absorbed and emitted photons are typically much larger than kT (k is the Boltzmann constant and T is the Kelvin temperature). At present, the UCL covers the whole visible spectrum range, which can be applied in many fields including the solid laser, the multicolor display technology, the optical data storage, the biological probe, and the bio-imaging. Especially in the biological field, the UC materials can penetrate a much depth in the body benefiting from its infrared light excitation, and meanwhile, the florescence emission from the organic molecules can be avoided. Therefore, the UC materials yield many unique features in the detection and the identification of the biomolecules. Here, in this chapter, a fundamental description of the UC processes and the properties of the UC materials is provided. Section 1.1 provides a brief introduction to the UCL materials and the main UCL processes. Section 1.2 describes the necessary mechanisms and the processes involved in the UCL. Section 1.3 introduces the methods for improving the luminescent performance of the UCL materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Auzel F. Compteur quantique par transfert d’energie entre deux ions de terres rares dans un tungstate mixte et dans un verre. CR Acad Sci Paris. 1966;262:1016–9.

    Google Scholar 

  • Auzel FE. Materials and devices using double-pumped-phosphors with energy transfer. Proc IEEE. 1973;61(6):758–86.

    Article  CAS  Google Scholar 

  • Auzel F. Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared up-conversion. J Electrochem Soc. 1975;122(1):101.

    Article  CAS  Google Scholar 

  • Auzel F. Upconversion processes in coupled ion systems. J Lumin. 1990;45(1–6):341–345.

    Article  CAS  Google Scholar 

  • Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev. 2004;104(1):139–73.

    Article  CAS  PubMed  Google Scholar 

  • Auzel F, Pecile D. Comparison and efficiency of materials for summation of photons assisted by energy transfer. J Lumin. 1973;8(1):32–43.

    Article  CAS  Google Scholar 

  • Auzel F, Pecile D. Absolute efficiency for IR to blue conversion materials and theoretical prediction for optimized matrices. J Lumin. 1976;11(5–6):321–30.

    Article  CAS  Google Scholar 

  • Bloembergen N. Solid state infrared quantum counters. Phys Rev Lett. 1959;2(3):84–5.

    Article  CAS  Google Scholar 

  • Chamarro MA, Cases R. Energy up-conversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses. J Lumin. 1988;42(5):267–74.

    Article  CAS  Google Scholar 

  • Chen G, et al. Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by trido** with Li+ ions. J Phys Chem C. 2008;112(31):12030–6.

    Article  CAS  Google Scholar 

  • Chivian JS, Case WE, Eden DD. The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters. Appl Phys Lett. 1979;35(2):124–5.

    Article  CAS  Google Scholar 

  • Cresswell PJ, Robbins DJ, Thomson AJ. Rhenium(IV) as a sensitizer for two-step blue up-converters. J Lumin. 1978;17(3):311–24.

    Article  CAS  Google Scholar 

  • Deng R, et al. Temporal full-colour tuning through non-steady-state upconversion. Nat Nanotechnol. 2015;10(3):237–42.

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Sun LD, Yan CH. Ag nanowires enhanced upconversion emission of NaYF4:Yb, Er nanocrystals via a direct assembly method. Chem Commun (Camb). 2009;29:4393–5.

    Article  CAS  Google Scholar 

  • Föster T. Intermolecular energy transfer and fluorescence. Ann. Phys. Leipzig. 1948;2:55–75.

    Google Scholar 

  • Fujimoto Y, et al. Visible fiber lasers excited by GaN laser diodes. Prog Quantum Electron. 2013;37(4):185–214.

    Article  Google Scholar 

  • Garfield DJ, et al. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat Photonics;2018.

    Google Scholar 

  • Goldner P, Pellé F, Auzel F. Theoretical evaluation of cooperative luminescence rate in Yb3+: CsCdBr 3 and comparison with experiment. J Lumin. 1997;72–74:901–3.

    Article  Google Scholar 

  • Guo H, et al. Seed-mediated synthesis of NaY F4: Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity. Nanotechnology. 2010;21(12):125602.

    Article  PubMed  CAS  Google Scholar 

  • Guy S, Joubert MF, Jacquier B. Blue upconverted fluorescence via photon-avalanche pum** in YAG: Tm. physica status solidi (b). 1994;18(1).

    Google Scholar 

  • Han S, et al. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew Chem Int Ed Engl. 2014;53(44):11702–15.

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Zhang Y, Wei X. Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films. Angew Chem. 2011;123(30):7008–12.

    Article  Google Scholar 

  • Heer S, et al. Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew Chem Int Ed Engl. 2003;42(27):3179–82.

    Article  CAS  PubMed  Google Scholar 

  • Heer S, et al. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv Mater. 2004;16(23–24):2102–5.

    Article  CAS  Google Scholar 

  • Hehlen MP, et al. Encyclopedia of materials; science and technology, vol. 4. Elsevier Science Ltd;2001. p. 9956.

    Google Scholar 

  • Hehlen MP, et al. Cooperative optical bistability in the dimer system Cs3Y2Br 9:10% Yb3+. J Chem Phys. 1996;104(4):1232–44.

    Article  CAS  Google Scholar 

  • Hehlen MP, et al. Site-Selective, Intrinsically Bistable Luminescence ofYb3 + Ion Pairs inCsCdBr 3. Phys Rev Lett. 1999;82(15):3050–3.

    Article  CAS  Google Scholar 

  • Huang SH. Luminescence kinetics of ion centers. Science Press;2002.

    Google Scholar 

  • Huang X, et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev. 2013;42(1):173–201.

    Article  CAS  PubMed  Google Scholar 

  • Hubert S, et al. Up conversion process in U4+-doped ThBr 4 and ThCl4. J Solid State Chem. 1986;61(2):252–9.

    Article  CAS  Google Scholar 

  • Hutchinson JA, Allik TH. Diode array-pumped Er, Yb: phosphate glass laser. Appl Phys Lett. 1992;60(12):1424–6.

    Article  CAS  Google Scholar 

  • Joubert M-F. Photon avalanche upconversion in rare earth laser materials. Opt Mater. 1999;11(2–3):181–203.

    Article  CAS  Google Scholar 

  • Kaminskii AA. Laser crystals: their physics and properties[M], vol. 14. Berlin: Springer;2013.

    Google Scholar 

  • Kaplyanskii AA, McFarlane RM. Spectro-scopy of solids containing rare earth ions. In: Modern problems in condensed matter sciences, vol. 21;1987.

    Google Scholar 

  • Krasutsky NJ. 10-μm samarium based quantum counter. J Appl Phys. 1983;54(3):1261–7.

    Article  CAS  Google Scholar 

  • Kueny AW, Case WE, Koch ME. Nonlinear-optical absorption through photon avalanche. J Opt Soc Am B. 1989;6(4):639.

    Article  CAS  Google Scholar 

  • Kueny AW, Case WE, Koch ME. Infrared-to-ultraviolet photon-avalanche-pumped upconversion in Tm:LiYF_4. J Opt Soc Am B. 1993;10(10):1834.

    Article  CAS  Google Scholar 

  • Lee WI, Bae Y, Bard AJ. Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. J Am Chem Soc. 2004;126(27):8358–9.

    Article  CAS  PubMed  Google Scholar 

  • Li LL, et al. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew Chem Int Ed Engl. 2012;51(25):6121–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Chen D. Controlled synthesis of hexagon shaped lanthanide-doped LaF3 nanoplates with multicolor upconversion fluorescence. J Mater Chem. 2007;17(37):3875.

    Article  CAS  Google Scholar 

  • Liu C, et al. Monodisperse, size-tunable and highly efficient β-NaYF4:Yb, Er(Tm) up-conversion luminescent nanospheres: controllable synthesis and their surface modifications. J Mater Chem. 2009;19(21):3546.

    Article  CAS  Google Scholar 

  • Lüthi SR, et al. Excited-state dynamics and optical bistability in the dimer system Cs3Lu2Br 9: Yb3+. J Lumin. 1998;76–77:447–50.

    Article  Google Scholar 

  • Malinowski M, et al. Optical transitions of Ho3+ in YAG. J Alloy Compd. 2000;300–301:389–94.

    Article  Google Scholar 

  • Martı́n IR, et al. Infrared, blue and ultraviolet upconversion emissions in Yb3+–Tm3+-doped fluoroindate glasses. Spectrochim Acta Part A: Mol Biomol Spectrosc. 1999;55(5):941–5.

    Article  Google Scholar 

  • Méndez-Ramos J, et al. Optical properties of Er3+ ions in transparent glass ceramics. J Alloy Compd. 2001;323–324:753–8.

    Article  Google Scholar 

  • Moncorgé R, Auzel F, Breteau JM. Excited state absorption and energy transfer in the infrared laser material MgF2: Ni2+. Philos Mag B. 2006;51(5):489–99.

    Article  Google Scholar 

  • Nadort A, Zhao J, Goldys EM. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale. 2016;8(27):13099–130.

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa E, Shionoya S. Cooperative Luminescence in YbPO4. Phys Rev Lett. 1970;25(25):1710–2.

    Article  CAS  Google Scholar 

  • O’Brien B. Development of infra-red sensitive phosphors. JOSA. 1946;36(7):369–71.

    Article  Google Scholar 

  • Ofelt GS. Intensities of crystal spectra of rare-earth ions. J Chem Phys. 1962;37(3):511–20.

    Article  CAS  Google Scholar 

  • Page RH, et al. Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium. In: Advanced solid state lasers, vol. 3;1998.

    Google Scholar 

  • Park YI, et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater. 2009;21(44):4467–71.

    Article  CAS  Google Scholar 

  • Pelletier-Allard N, Pelletier R. An internal quantum counter for lifetime measurements. Opt Commun. 1991;81(3–4):247–50.

    Article  CAS  Google Scholar 

  • Qian HS, Zhang Y. Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir. 2008;24(21):12123–5.

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Yokomori T, Ju Y. Flame synthesis and characterization of rare-earth (Er3+, Ho3+, and Tm3+) doped upconversion nanophosphors. Appl Phys Lett. 2007;90(7):073104.

    Article  CAS  Google Scholar 

  • Rohwer LS, Martin JE. Measuring the absolute quantum efficiency of luminescent materials. J Lumin. 2005;115(3–4):77–90.

    Article  CAS  Google Scholar 

  • Salley GM, Valiente R, Guedel HU. Luminescence upconversion mechanisms in Yb3+–Tb3+ systems. J Lumin. 2001;94–95:305–9.

    Article  Google Scholar 

  • Sangeetha NM, van Veggel FCJM. Lanthanum Silicate and Lanthanum Zirconate Nanoparticles Co-Doped with Ho3+ and Yb3+: Matrix-Dependent Red and Green Upconversion Emissions. J Phys Chem C. 2009;113(33):14702–7.

    Article  CAS  Google Scholar 

  • Schäfer H, et al. Synthesis and optical properties of KYF4/Yb, Er nanocrystals, and their surface modification with undoped KYF4. Adv Func Mater. 2008;18(19):2913–8.

    Article  CAS  Google Scholar 

  • Singh AK, et al. Photon avalanche upconversion and pump power studies in LaF3:Er3+/Yb3+ phosphor. Appl Phys B. 2011;104(4):1035–41.

    Article  CAS  Google Scholar 

  • Song E, et al. Room-Temperature Wavelength-Tunable Single-Band Upconversion Luminescence from Yb3+/Mn2+ Codoped Fluoride Perovskites ABF3. Advanced Optical Materials. 2016;4(5):798–806.

    Article  CAS  Google Scholar 

  • Suyver JF, et al. Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt Mater. 2005;27(6):1111–30.

    Article  CAS  Google Scholar 

  • Tang J, et al. Selectively enhanced red upconversion luminescence and phase/size manipulation via Fe(3+) do** in NaYF4:Yb. Er nanocrystals. Nanoscale. 2015;7(35):14752–9.

    Article  CAS  PubMed  Google Scholar 

  • Vetrone F, et al. Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals. J Appl Phys. 2004;96(1):661–7.

    Article  CAS  Google Scholar 

  • Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev. 2009;38(4):976–89.

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang J, Liu X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed Engl. 2010;49(41):7456–60.

    Article  CAS  PubMed  Google Scholar 

  • Wu X, et al. Infrared-to-visible conversion luminescence of Tm 3+ and Yb 3+ ions in glass ceramics. J Lumin. 1994;60–61:212–5.

    Article  Google Scholar 

  • Xu X, Su M. Luminescence and luminescient materials. Chemical Industry Press;2004.

    Google Scholar 

  • Yen WM, Selzer PM. Laser Spectroscopy of solids. Springer;1981.

    Google Scholar 

  • Yi GS, Chow GM. Synthesis of hexagonal-phase NaYF4:Yb, Er and NaYF4:Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv Func Mater. 2006;16(18):2324–9.

    Article  CAS  Google Scholar 

  • Yi G, Peng Y, Gao Z. Strong red-emitting near-infrared-to-visible upconversion fluorescent nanoparticles. Chem Mater. 2011;23(11):2729–34.

    Article  CAS  Google Scholar 

  • Zhao T, et al. Upconversion nanocrystals doped glass: a new paradigm for integrated optical glass;2016. p. AM5C.7.

    Google Scholar 

  • Zhao C, et al. Li+ ion do**: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles. Nanoscale. 2013a;5(17):8084–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat Nanotechnol. 2013b;8(10):729–34.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Liu Z, Li F. Upconversion nanophosphors for small-animal imaging. Chem Soc Rev. 2012;41(3):1323–49.

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, et al. Anti-stokes shift luminescent materials for bio-applications. Chem Soc Rev. 2017;46(4):1025–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Song, D., Zhao, S., Xu, Z. (2019). Upconversion Luminescent Materials: Properties and Luminescence Mechanisms. In: Yang, R. (eds) Principles and Applications of Up-converting Phosphor Technology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9279-6_1

Download citation

Publish with us

Policies and ethics

Navigation