Experimental Observation of an Acoustic Field

  • Reference work entry
  • First Online:
Handbook of Ultrasonics and Sonochemistry
  • 3580 Accesses

Abstract

In this section, optical techniques used for experimental observation of acoustic fields are reviewed. Acousto-optic interaction is discussed as a basic principle for visualizing inhomogeneity in refractive index fields. Light deflection and diffraction are also discussed as typical phenomena, especially in visualization of ultrasound fields. Three techniques, phase detection, Schlieren, and shadowgraph techniques, are mainly reviewed with discussion of the differences in the principles, optical systems, and acquired images. Background-oriented Schlieren technique, scanning laser Doppler vibrometry, and photoelastic techniques are also discussed as relatively new techniques for visualization of ultrasound fields. A technique that visualizes a distribution of temperature rise generated by ultrasound exposure is also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 750.00
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 534.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rienitz J (1975) Nature 254:293

    Article  Google Scholar 

  2. Lucas R, Biquard P (1932) J Phys Radium 3:464

    Article  Google Scholar 

  3. Debye P, Sears F (1932) Proc Natl Acad Sci U S A 18:409

    Article  CAS  Google Scholar 

  4. Raman CV, Nath NSN (1935) Proc Indian Acad Sci Sect A 2:406

    Google Scholar 

  5. Raman CV, Nath NSN (1936) Proc Indian Acad Sci Sect A 2:413

    Google Scholar 

  6. Raman CV, Nath NSN (1936) Proc Indian Acad Sci Sect A 3:75

    Google Scholar 

  7. Raman CV, Nath NSN (1936) Proc Indian Acad Sci Sect A 3:119

    Google Scholar 

  8. Raman CV, Nath NSN (1936) Proc Indian Acad Sci Sect A 3:459

    Google Scholar 

  9. Rienitz J (1997) Endeavour 21:77

    Article  Google Scholar 

  10. Settles GS (2001) Schlieren and shadowgraph techniques: visualizing phenomena in transparent media. Springer, Berlin

    Book  Google Scholar 

  11. Kudo N (2015) Jpn J Appl Phys 54:07HA01

    Article  Google Scholar 

  12. Adler L, Hiedemann EA (1962) J Acoust Soc Am 34:410

    Article  CAS  Google Scholar 

  13. Colbert HM, Zankel KL (1963) J Acoust Soc Am 35:359

    Article  Google Scholar 

  14. Mizutani K, Ezure T, Nagai K, Yoshioka M (2001) Jpn J Appl Phys 40:3617

    Article  CAS  Google Scholar 

  15. Obuchi T, Masuyama H, Mizutani K, Nakanishi S (2006) Jpn J Appl Phys 45:7152

    Article  CAS  Google Scholar 

  16. Patorski K (1981) Ultrasonics 19:169

    Article  Google Scholar 

  17. Zernike F (1942) Physica 9:686

    Article  Google Scholar 

  18. Pitts TA, Sagers A, Greenleaf JF (2001) IEEE Trans Ultrason Ferroelectr Freq Control 48:1686

    Article  CAS  Google Scholar 

  19. Harigane S, Miyasaka R, Yoshizawa S, Umemura SI (2013) Jpn J Appl Phys 52:07HF07

    Article  Google Scholar 

  20. Núñez I, Ferrari JA (2007) Appl Opt 46:725

    Article  Google Scholar 

  21. Hanafy A, Zanelli CI (1991) Proc IEEE Int Ultrason Symp 1223–1228

    Google Scholar 

  22. Pitts T, Greenleaf J, Lu J, Kinnick R (1994) Ultrason Symp 1665–1668

    Google Scholar 

  23. Schneider B, Shung K (1996) Ultrason Ferroelectr Freq Control IEEE Trans 43:1181

    Article  Google Scholar 

  24. Charlebois T, Pelton R (1995) Med Electron 66–73

    Google Scholar 

  25. Azuma T, Tomozawa A, Umemura S (2002) Jpn J Appl Phys 41:3308

    Article  CAS  Google Scholar 

  26. Kudo N, Ouchi H, Yamamoto K, Sekimizu H (2004) J Phys Conf Ser 1:146

    Article  Google Scholar 

  27. Kudo N, Miyashita H, Yamamoto K (2006) AIP Conf Proc 829:614

    Article  Google Scholar 

  28. Kudo N, Sanbonmatsu Y, Shimizu K (2010) Proc IEEE Int Ultrason Symp 829–832

    Google Scholar 

  29. Kudo N (2015) Ultrasound Med Biol 41:2071

    Article  Google Scholar 

  30. Merzkirch W (1974) Flow visualization. Academic, London

    Google Scholar 

  31. Omura R, Shimazaki Y, Yoshizawa S, Umemura S (2011) Jpn J Appl Phys 50:07HC07

    Article  Google Scholar 

  32. de Izarra G, de Izarra C (2012) Eur J Phys 33:1821

    Article  Google Scholar 

  33. Kikuchi D, Sun M (2009) In: Choi H, Choi H, Yoo J (eds) Comput. Fluid Dyn. 2008 SE – 109. Springer, Berlin, pp 801–804

    Chapter  Google Scholar 

  34. Boys CV (1893) Nature 47:440

    Article  Google Scholar 

  35. Settles G, Grumstrup T (2005) Proc 5th Pacific Symp Flow Vis Image Process. 7 pages

    Google Scholar 

  36. Pitts TA, Greenleaf JF (2000) J Acoust Soc Am 108:2873

    Article  CAS  Google Scholar 

  37. Neumann T, Ermert H (2006) Ultrasonics 44(Suppl 1):e1561

    Article  Google Scholar 

  38. Shimazaki Y, Harigane S, Yoshizawa S, Umemura S (2012) Jpn J Appl Phys 51:07GF25

    Article  Google Scholar 

  39. Richard H, Raffel M (2001) Meas Sci Technol 12:1576

    Article  CAS  Google Scholar 

  40. Butterworth I, Shaw A (2010) Proc 39th Annu Symp Ultrason Ind Assoc UIA 2010

    Google Scholar 

  41. Harland AR, Petzing JN, Tyrer JR (2004) J Acoust Soc Am 115:187

    Article  Google Scholar 

  42. Wyatt R (1972) Nondestruct Test 5:354

    Article  Google Scholar 

  43. Washimori S, Mihara T, Tashiro H (2012) Mater Trans 53:631

    Article  CAS  Google Scholar 

  44. Lafon C, Zderic V, Noble ML, Yuen JC, Kaczkowski PJ, Sapozhnikov OA, Chavrier F, Crum LA, Vaezy S (2005) Ultrasound Med Biol 31:1383

    Article  Google Scholar 

  45. Tsuchiya T, Shimizu K, Endoh N Choonpa Igaku 10.3179/jjmu.JJMU.R.55, in print

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuki Kudo .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Kudo, N. (2016). Experimental Observation of an Acoustic Field. In: Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-278-4_8

Download citation

Publish with us

Policies and ethics

Navigation