Marine Bioprospecting for the Treatment of Human Parasitic Diseases

  • Chapter
  • First Online:
Natural Product Based Drug Discovery Against Human Parasites

Abstract

This chapter provides information on sulfated polysaccharides (SPS), which are found in marine hydrobionts including algae and invertebrates that may be used to treat and prevent protozoa and helminthiasis. The pathogenetic targets of the protozoa in the cells of the host and their antiparasitic activity through polysaccharides from different algae from marine ecosystems are included in this chapter. Additionally, a summary of information has been provided regarding the mechanisms of action of these special chemicals in disorders brought on by protozoa. High antiparasitic action, good solubility, and nearly no toxicity are what set SPS apart. Long term, makes it possible to view these substances as desirable and efficient building blocks for pharmaceuticals, biologically active food additives, and functional food items with antiparasitic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bai X, Li M, Wang X, Chang H, Ni Y, Li C, Xu Z (2020) Therapeutic potential of fucoidan in the reduction of hepatic pathology in murine Schistosomiasis japonica. Parasit Vectors 13(1):1–14

    Article  Google Scholar 

  • Balunas MJ, Grosso MF, Villa FA, Engene N, McPhail KL, Tidgewell K et al (2012) Coibacins A–D, antileishmanial marine cyanobacterial polyketides with intriguing biosynthetic origins. Org Lett 14(15):3878–3881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Besednova NN, Zaporozhets TS, Andryukov BG, Kryzhanovsky SP, Ermakova SP, Kuznetsova TA et al (2021) Antiparasitic effects of sulfated polysaccharides from marine hydrobionts. Mar Drugs 19(11):637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhatia P, Chugh A (2015) Role of marine bioprospecting contracts in develo** access and benefit sharing mechanism for marine traditional knowledge holders in the pharmaceutical industry. Glob Ecol Conserv 3:176–187

    Google Scholar 

  • Camara RBG, Costa LS, Fidelis GP, Nobre LTDB, Dantas-Santos N, Cordeiro SL, Rocha HAO (2011) Heterofucans from the brown seaweed Canistrocarpus cervicornis with anticoagulant and antioxidant activities. Mar Drugs 9(1):124–138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chai QY, Yang Z, Lin HW, Han BN (2016) Alkynyl-containing peptides of marine origin: a review. Mar Drugs 14(11):216

    Article  PubMed  PubMed Central  Google Scholar 

  • Combes C (2020) The art of being a parasite. In: The art of being a parasite. University of Chicago Press, Chicago

    Google Scholar 

  • Davies-Bolorunduro OF, Osuolale O, Saibu S, Adeleye IA, Aminah NS (2021) Bioprospecting marine actinomycetes for antileishmanial drugs: current perspectives and future prospects. Heliyon 7(8):e07710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Borba Gurpilhares D, Moreira TR, da Luz Bueno J, Cinelli LP, Mazzola PG, Pessoa A, Sette LD (2016) Algae’s sulfated polysaccharides modifications: potential use of microbial enzymes. Process Biochem 51(8):989–998

    Article  Google Scholar 

  • De Oliveira LS, Tschoeke DA, De Oliveira AS, Hill LJ, Paradas WC, Salgado LT et al (2015) New insights on the terpenome of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta). Mar Drugs 13(2):879–902

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorta E, Cueto M, Brito I, Darias J (2002) New terpenoids from the brown alga Stypopodium zonale. J Nat Prod 65(11):1727–1730

    Article  PubMed  CAS  Google Scholar 

  • Eberle JU, Voehringer D (2016) Role of basophils in protective immunity to parasitic infections. Semin Immunopathol 38(5):605–613

    Article  PubMed  Google Scholar 

  • Eckhoff PA (2011) A malaria transmission-directed model of mosquito life cycle and ecology. Malar J 10(1):1–17

    Article  Google Scholar 

  • Efstathiou A, Smirlis D (2021) Leishmania protein kinases: important regulators of the parasite life cycle and molecular targets for treating leishmaniasis. Microorganisms 9(4):691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gharirvand Eskandari E, Setorki M, Doudi M (2020) Medicinal plants with antileishmanial properties: a review study. Pharm Biomed Res 6(1):1–16

    Google Scholar 

  • Gunasekaran K, Sahu SS, Vijayakumar T, Vaidyanathan K, Yadav RS, Pigeon O, Jambulingam P (2014) Comparison of efficacy of five types of long-lasting insecticidal nets against Anopheles fluviatilis, the primary malaria vector in East-Central India. J Med Entomol 51(4):785–794

    Article  PubMed  CAS  Google Scholar 

  • Hares MF, Tiffney EA, Johnston LJ, Luu L, Stewart CJ, Flynn RJ, Coombes JL (2021) Stem cell-derived enteroid cultures as a tool for dissecting host–parasite interactions in the small intestinal epithelium. Parasite Immunol 43(2):e12765

    Article  PubMed  Google Scholar 

  • Howick VM, Russell AJ, Andrews T, Heaton H, Reid AJ, Natarajan K et al (2019) The Malaria Cell Atlas: single parasite transcriptomes across the complete Plasmodium life cycle. Science 365(6455):eaaw2619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu G, Gong AY, Roth AL, Huang BQ, Ward HD, Zhu G, Chen XM (2013) Release of luminal exosomes contributes to TLR4-mediated epithelial antimicrobial defense. PLoS Pathog 9(4):e1003261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hunt B, Vincent AC (2006) Scale and sustainability of marine bioprospecting for pharmaceuticals. Ambio 35(2):57–64

    Article  PubMed  Google Scholar 

  • Iordache F, Ionita M, Mitrea LI, Fafaneata C, Pop A (2015) Antimicrobial and antiparasitic activity of lectins. Curr Pharm Biotechnol 16(2):152–161

    Article  PubMed  CAS  Google Scholar 

  • Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD et al (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301(5639):1503–1508

    Article  PubMed  Google Scholar 

  • Marealle AI, Mbwambo DP, Mikomangwa WP, Kilonzi M, Mlyuka HJ, Mutagonda RF (2018) A decade since sulfonamide-based anti-malarial medicines were limited for intermittent preventive treatment of malaria among pregnant women in Tanzania. Malar J 17(1):1–7

    Article  Google Scholar 

  • McCarthy E, Stack C, Donnelly SM, Doyle S, Mann VH, Brindley PJ, Dalton JP (2004) Leucine aminopeptidase of the human blood flukes, Schistosoma mansoni and Schistosoma japonicum. Int J Parasitol 34(6):703–714

    Article  PubMed  CAS  Google Scholar 

  • McDougald LR, Cervantes HM, Jenkins MC, Hess M, Beckstead R (2020) Protozoal infections. In: Diseases of poultry. Wiley, New York, pp 1192–1254

    Chapter  Google Scholar 

  • Mehbub MF, Lei J, Franco C, Zhang W (2014) Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs 12(8):4539–4577

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgado F, Vieira LR (2021) Marine bioprospecting to improve knowledge of the biological sciences and industrial processes. In: Affordable and clean energy. Springer International Publishing, Cham, pp 845–858

    Chapter  Google Scholar 

  • Motazedian MH, Mehrbani D, Oryan A, Asgari G, Karamian M, Kalantari M (2006) Life cycle of cutaneous leishmaniasis in Larestan, southern Iran. Iran J Clin Infect Dis 1(3):137–143

    Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102(1):57–70

    Article  PubMed  CAS  Google Scholar 

  • Nureye D, Assefa S (2020) Old and recent advances in life cycle, pathogenesis, diagnosis, prevention, and treatment of malaria including perspectives in Ethiopia. Sci World J 2020(10):1–17

    Article  Google Scholar 

  • Nussbaum K, Honek J, Cadmus C, Efferth T (2010) Trypanosomatid parasites causing neglected diseases. Curr Med Chem 17(15):1594–1617

    Article  PubMed  CAS  Google Scholar 

  • Osei E, Kwain S, Mawuli GT, Anang AK, Owusu KBA, Camas M, Kyeremeh K (2018) Paenidigyamycin A, potent antiparasitic imidazole alkaloid from the Ghanaian Paenibacillus sp. DE2SH. Mar Drugs 17(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Parra LL, Bertonha AF, Severo IR, Aguiar AC, de Souza GE, Oliva G et al (2018) Isolation, derivative synthesis, and structure–activity relationships of antiparasitic bromopyrrole alkaloids from the marine sponge Tedania brasiliensis. J Nat Prod 81(1):188–202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paul SI, Majumdar BC, Ehsan R, Hasan M, Baidya A, Bakky MAH (2021) Bioprospecting potential of marine microbial natural bioactive compounds. J Appl Biotechnol Rep 8(2):96–108

    CAS  Google Scholar 

  • Pena-Espinoza M, Valente AH, Thamsborg SM, Simonsen HT, Boas U, Enemark HL et al (2018) Antiparasitic activity of chicory (Cichorium intybus) and its natural bioactive compounds in livestock: a review. Parasit Vectors 11(1):1–14

    Article  Google Scholar 

  • Reed PA (2005) Bioprospecting. Technol Teach 64(4):14–18

    Google Scholar 

  • Rizwan HM, Abbas H, Sajid MS, Maqbool M, Jones MK, Ullah MI, Ijaz N (2021) Drug resistance in protozoal infections. In: Biochemistry of drug resistance. Springer, Cham, pp 95–142

    Chapter  Google Scholar 

  • Scala F, Fattorusso E, Menna M, Taglialatela-Scafati O, Tierney M, Kaiser M, Tasdemir D (2010) Bromopyrrole alkaloids as lead compounds against protozoan parasites. Mar Drugs 8(7):2162–2174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharon M, Regev-Rudzki N (2021) Cell communication and protein degradation: all in one parasitic package. J Extracellular Vesicles 10(9):e12116

    Article  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sullivan JT, Belloir JA, Beltran RV, Grivakis A, Ransone KA (2014) Fucoidan stimulates cell division in the amebocyte-producing organ of the schistosome-transmitting snail Biomphalaria glabrata. J Invertebr Pathol 123:13–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian C, Gao B, del Carmen Rodriguez M, Lanz-Mendoza H, Ma B, Zhu S (2008) Gene expression, antiparasitic activity, and functional evolution of the drosomycin family. Mol Immunol 45(15):3909–3916

    Article  PubMed  CAS  Google Scholar 

  • Torres FA, Passalacqua TG, Velásquez A, Souza RAD, Colepicolo P, Graminha MA (2014) New drugs with antiprotozoal activity from marine algae: a review. Rev Bras 24:265–276

    CAS  Google Scholar 

  • Tuteja R (2007) Malaria—an overview. FEBS J 274(18):4670–4679

    Article  PubMed  CAS  Google Scholar 

  • Willis JE, McClure JT, Davidson J, McClure C, Greenwood SJ (2013) Global occurrence of Cryptosporidium and Giardia in shellfish: should Canada take a closer look? Food Res Int 52(1):119–135

    Article  Google Scholar 

  • Zhang H, Zhao Z, Wang H (2017) Cytotoxic natural products from marine sponge-derived microorganisms. Mar Drugs 15(3):68

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhimanyu Kumar Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khare, N., Mathur, R., Jha, N.K., Taneja, P., Jha, S.K., Jha, A.K. (2023). Marine Bioprospecting for the Treatment of Human Parasitic Diseases. In: Singh, A., Rathi, B., Verma, A.K., Singh, I.K. (eds) Natural Product Based Drug Discovery Against Human Parasites. Springer, Singapore. https://doi.org/10.1007/978-981-19-9605-4_6

Download citation

Publish with us

Policies and ethics

Navigation