Overcoming Constraints: The Critical Role of Penalty Functions as Constraint-Handling Methods in Structural Optimization

  • Living reference work entry
  • First Online:
Handbook of Formal Optimization

Abstract

Optimization problems are common in many fields, including engineering, finance, and logistics. These problems often involve complex objective functions and multiple constraints that must be satisfied simultaneously. To solve such problems, various optimization algorithms have been developed that employ different constraint-handling methods. This chapter provides an overview of these methods and compares their effectiveness in solving optimization problems. The most commonly used methods, including penalty functions, are discussed and evaluated. The optimum design of framed structures is a complex problem that requires balancing a variety of competing objectives, such as minimizing weight while maintaining structural integrity. Several constraint-handling methods are applied to these structures, and their performance are compared in terms of solution quality, computational efficiency, and robustness. The results show that the choice of constraint-handling method can significantly affect the optimization outcome and that different methods may be more effective depending on the specific problem and constraints involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Agustín-Blas LE, Salcedo-Sanz S, Ortiz-García EG, Portilla-Figueras A, Pérez-Bellido ÁM (2009) A hybrid grou** genetic algorithm for assigning students to preferred laboratory groups. Expert Syst Appl 36(3):7234–7241

    Article  Google Scholar 

  • Asafuddoula M, Ray T, Sarker R, Alam K (2012) An adaptive constraint handling approach embedded MOEA/D. IEEE Congr Evolut Comput 2012:1–8

    Google Scholar 

  • Ashtari P, Karami R, Farahmand-Tabar S (2021) Optimum geometrical pattern and design of real-size diagrid structures using accelerated fuzzy-genetic algorithm with bilinear membership function. Appl Soft Comput 110:107646. https://doi.org/10.1016/j.asoc.2021.107646

    Article  Google Scholar 

  • Bäck T, Fogel DB, Michalewicz Z (2018) Evolutionary computation 1. In: Baeck T, Fogel DB, Michalewicz Z (eds) Basic algorithms and operators. CRC Press, Florida

    MATH  Google Scholar 

  • Ben Hadj-Alouane A, Bean JC (1997) A genetic algorithm for the multiple-choice integer program. Oper Res 45(1):92–101

    Article  MathSciNet  MATH  Google Scholar 

  • Carlson SE, Shonkwiler R (1998) Annealing a genetic algorithm over constraints. In: SMC’98 conference proceedings. 1998 IEEE international conference on systems, man, and cybernetics (cat. No. 98CH36218), 4, pp 3931–3936

    Chapter  Google Scholar 

  • Coello CAC (2001) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11–12):1245–1287

    MathSciNet  MATH  Google Scholar 

  • Coello CAC (2002) Theoretical and numerical constrainthandling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11–12):1245–1287

    Article  MATH  Google Scholar 

  • Coello CAC (2017) Constraint-handling techniques used with evolutionary algorithms. Proceedings of the genetic and evolutionary computation conference companion 675–701

    Google Scholar 

  • Coello, C. A. C., & Carlos, A. (1999). A survey of constraint handling techniques used with evolutionary algorithms. Lania- RI-99–04, Laboratorio Nacional de Informática Avanzada

    Google Scholar 

  • Coello CAC, Christiansen AD, Aguirre AH (1995) Multiobjective design optimization of counterweight balancing of a robot arm using genetic algorithms. Proceedings of 7th IEEE international conference on tools with artificial intelligence 20–23

    Google Scholar 

  • Coello CAC, Lamont GB, Van Veldhuizen DA et al (2007) Evolutionary algorithms for solving multi-objective problems. Springer, New York

    MATH  Google Scholar 

  • Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338

    Article  MATH  Google Scholar 

  • Deb K (2014) Multi-objective optimization search methodologies. Search Methodologies, Springer, New York

    Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Degertekin SO (2008) Optimum design of steel frames using harmony search algorithm. Struct Multidisc Optim 36:393–401

    Article  Google Scholar 

  • Dengiz B, Altiparmak F, Smith AE (1997) Local search genetic algorithm for optimal design of reliable networks. IEEE Trans Evol Comput 1(3):179–188

    Article  Google Scholar 

  • Fan Z, Li W, Cai X, Li H, Wei C, Zhang Q, Deb K, Goodman E (2019) Push and pull search for solving constrained multi-objective optimization problems. Swarm Evol Comput 44:665–679

    Article  Google Scholar 

  • Farahmand-Tabar S, Ashtari P (2020) Simultaneous size and topology optimization of 3D outrigger-braced tall buildings with inclined belt truss us-ing genetic algorithm. Struct Design Tall Spec Build 29(13):e1776. https://doi.org/10.1002/tal.1776

    Article  Google Scholar 

  • Farahmand-Tabar S, Babaei M (2023) Memory-assisted adaptive multi-verse optimizer and its application in structural shape and size optimization. Soft Comput. https://doi.org/10.1007/s00500-023-08349-9

  • Farahmand-Tabar S (2023) Genetic algorithm and accelerating fuzzification for optimum sizing and topology design of real-size tall building systems. In: Dey N (eds) Applied genetic algorithm and Its variants. Springer tracts in nature-inspired computing. Springer, Singapore. https://doi.org/10.1007/978-981-99-3428-7_9

  • Farahmand-Tabar S, Shirgir S (2024a) Antlion-Facing Ant Colony Optimization in Parameter Identification of the MR Damper as a Semi-Active Control Device. In: Dey N (eds) Applications of Ant Colony Optimization and Its Variants. Springer Tracts in Nature-Inspired Computing. Springer, Singapore.

    Google Scholar 

  • Farahmand-Tabar S, Shirgir S (2024b) Opposed Pheromone Ant Colony Optimization for Property Identification of Nonlinear Structures. In: Dey N (eds) Applications of Ant Colony Optimization and Its Variants. Springer Tracts in Nature-Inspired Computing. Springer, Singapore.

    Google Scholar 

  • Farahmand-Tabar S (2024) Frequency-Based Optimization of Truss Dome Structures using Ant Colony Optimization (ACOR) with Multi-Trail Pheromone Memory. In: Dey N (eds) Applications of Ant Colony Optimization and Its Variants. Springer Tracts in Nature-Inspired Computing. Springer, Singapore.

    Google Scholar 

  • Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 191:105190

    Article  Google Scholar 

  • Fonseca LG, Capriles PVSZ, Barbosa HJC, Lemonge ACC (2007) A stochastic rank-based ant system for discrete structural optimization. IEEE Swarm Intell Symp 2007:68–75

    Google Scholar 

  • Gharehchopogh FS (2022) Advances in tree seed algorithm: a comprehensive survey. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-022-09804-w

  • Homaifar A, Qi CX, Lai SH (1994) Constrained optimization via genetic algorithms. SIMULATION 62(4):242–253

    Article  Google Scholar 

  • Jan MA, Khanum RA (2013) A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D. Appl Soft Comput 13(1):128–148

    Article  Google Scholar 

  • Joines JA, Houck CR (1994) On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’s. Proceedings of the first IEEE conference on evolutionary computation. IEEE world congress on computational intelligence 579–584

    Google Scholar 

  • Jordehi AR (2015) A review on constraint handling strategies in particle swarm optimisation. Neural Comput & Applic 26(6):1265–1275

    Article  Google Scholar 

  • Kaveh A, Talatahari S (2010) A discrete big bang–big crunch algorithm for optimal design of skeletal structures. Asian J Civ Eng 11(1):103–122

    Google Scholar 

  • Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evol Comput 9(5):474–488

    Article  Google Scholar 

  • Leguizamon G, Coello CAC (2008) Boundary search for constrained numerical optimization problems with an algorithm inspired by the ant colony metaphor. IEEE Trans Evol Comput 13(2):350–368

    Article  Google Scholar 

  • Li H, Zhang Q, Deng J (2016a) Biased multiobjective optimization and decomposition algorithm. IEEE Transa Cybern 47(1):52–66

    Article  Google Scholar 

  • Li J-P, Wang Y, Yang S, Cai Z (2016b) A comparative study of constraint-handling techniques in evolutionary constrained multiobjective optimization. IEEE Congr Evolut Comput (CEC) 2016:4175–4182

    Google Scholar 

  • Liu Z-Z, Wang Y (2019) Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces. IEEE Trans Evol Comput 23(5):870–884

    Article  Google Scholar 

  • Liu, R., Li, Y., Zhang, W., & Jiao, L. (2009). Stochastic ranking based differential evolution algorithm for constrained optimization problem. In Proceedings of the first acm/sigevo summit on genetic and evolutionary computation (pp. 887–890)

    Google Scholar 

  • Mallipeddi R, Suganthan PN (2010a) Ensemble of constraint handling tech-niques. IEEE Trans Evol Comput 14(4):561–579

    Article  Google Scholar 

  • Mallipeddi R, Suganthan PN (2010b) Differential evolution with ensemble of constraint handling techniques for solving CEC 2010 benchmark problems. IEEE Congr Evolut Comput. https://doi.org/10.1109/CEC.2010.5586330

  • Mallipeddi R, Suganthan PN, Qu B-Y (2009) Diversity enhanced adaptive evolutionary programming for solving single objective constrained problems. IEEE Congr Evolut Comput 2009:2106–2113

    Google Scholar 

  • Mezura-Montes E, Coello CAC (2005) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans Evol Comput 9(1):1–17

    Article  MATH  Google Scholar 

  • Mezura-Montes E, Coello CAC (2011) Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol Comput 1(4):173–194

    Article  Google Scholar 

  • Mezura-Montes E, Coello CAC, Tun-Morales EI (2004) Simple feasibility rules and differential evolution for constrained optimization. Mexican Int Conf Artif Intell. https://doi.org/10.1007/978-3-540-24694-7_73

  • Ngo CY, Li VOK (2003) Centralized broadcast scheduling in packet radio networks via genetic-fix algorithms. IEEE Trans Commun 51(9):1439–1441

    Article  Google Scholar 

  • Peng C, Liu H-L, Gu F (2017) An evolutionary algorithm with directed weights for constrained multi-objective optimization. Appl Soft Comput 60:613–622

    Article  Google Scholar 

  • Powell D, Skolnick MM (1993) Using genetic algorithms in engineering design optimization with non-linear constraints. In: Proceedings of the 5th international conference on genetic algorithms, pp 424–431

    Google Scholar 

  • Qu BY, Suganthan PN (2011) Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods. Eng Optim 43(4):403–416

    Article  MathSciNet  Google Scholar 

  • Ray T, Singh HK, Isaacs A, Smith W (2009) Infeasibility driven evolutionary algorithm for constrained optimization. In: Mezura-Montes E (ed) Con-straint-handling in evolutionary optimization. Springer, Berlin

    Google Scholar 

  • Runarsson TP, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4(3):284–294

    Article  Google Scholar 

  • Sadrekarimi N, Talatahari S, Azar BF, Gandomi AH (2023) A surrogate merit function developed for structural weight optimization problems. Soft Comput 27:1533–1563. https://doi.org/10.1007/s00500-022-07453-6

    Article  Google Scholar 

  • Salcedo-Sanz S (2009) A survey of repair methods used as constraint handling techniques in evolutionary algorithms. Comput Sci Rev 3(3):175–192

    Article  MATH  Google Scholar 

  • Salcedo-Sanz S, Camps-Valls G, Pérez-Cruz F, Sepúlveda-Sanchis J, Bousoño-Calzón C (2004) Enhancing genetic feature selection through restricted search and Walsh analysis. IEEE Trans Syst Man Cybern Part C Appl Rev 34(4):398–406

    Article  Google Scholar 

  • Shirgir S, Farahmand-Tabar S, Aghabeigi P (2023) Optimum design of real-size reinforced concrete bridge via charged system search algorithm trained by nelder-mead simplex, Expert systems with applications, 121815. https://doi.org/10.1016/j.eswa.2023.121815

  • Takahama T, Sakai S (2005) Constrained optimization by $\ varepsilon$ constrained particle swarm optimizer with $\ varepsilon$-level control in soft computing as transdisciplinary science and technology. Springer, Berlin

    Google Scholar 

  • Talbi E-G (2016) Combining metaheuristics with mathematical programming, constraint programming and machine learning. Ann Oper Res 240(1):171–215

    Article  MathSciNet  MATH  Google Scholar 

  • Vodopija, A., Oyama, A., & Filipič, B. (2019). Ensemble-based constraint handling in multiobjective optimization. Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2072–2075

    Google Scholar 

  • Woldesenbet YG, Yen GG, Tessema BG (2009) Constraint handling in multiobjective evolutionary optimization. IEEE Trans Evol Comput 13(3):514–525

    Article  Google Scholar 

  • **ao J, Xu J, Shao Z, Jiang C, Pan L (2007) A genetic algorithm for solving multi-constrained function optimization problems based on KS function. IEEE Congr Evolut Comput. https://doi.org/10.1109/CEC.2007.4425060

  • Yang Y, Liu J, Tan S (2020) A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism. Appl Soft Comput 89:106104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salar Farahmand-Tabar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Farahmand-Tabar, S., Sadrekarimi, N. (2023). Overcoming Constraints: The Critical Role of Penalty Functions as Constraint-Handling Methods in Structural Optimization. In: Kulkarni, A.J., Gandomi, A.H. (eds) Handbook of Formal Optimization. Springer, Singapore. https://doi.org/10.1007/978-981-19-8851-6_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8851-6_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8851-6

  • Online ISBN: 978-981-19-8851-6

  • eBook Packages: Springer Reference Intelligent Technologies and RoboticsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation