Antimalarial Drug Discovery and Development: From Bench to Bedside

  • Chapter
  • First Online:
Drugs and a Methodological Compendium

Abstract

Malaria is a mosquito-borne disease that wreaks devastation all over the world. Plasmodium, the disease’s causative agent, is spread via female Anopheles mosquito bites. Despite the fact that malaria is preventable and treatable, the crisis of antimalarial drug resistance is growing, necessitating active research for new and affordable medications that target the parasite’s specific pathways. Several new therapeutic targets have been discovered since the genome sequencing was completed in 2004. Through computational research of Plasmodium falciparum metabolism, several prospective drug development starting points have also been identified. As a result, drug development has shifted from serendipity/whole-cell screening of vast libraries to a new era of target-focused investigations, in which the method is more systematic and based on parasite genome knowledge. In this chapter, we discuss the current methodologies in antimalarial drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andrews KA, Wesche D, McCarthy J et al (2018) Model-informed drug development for malaria therapeutics. Annu Rev Pharmacol Toxicol 58:567–582

    Article  CAS  PubMed  Google Scholar 

  • Baker DA (2010) Malaria gametocytogenesis. Mol Biochem Parasitol 172(2):57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin SA, McConkey GA, Cass CE et al (2007) Nucleoside transport as a potential target for chemotherapy in malaria. Curr Pharm Des 13(6):569–580

    Article  CAS  PubMed  Google Scholar 

  • Bartoloni A, Zammarchi L (2012) Clinical aspects of uncomplicated and severe malaria. Mediterr J Hematol Infect Dis 4(1):e2012026

    Article  PubMed  PubMed Central  Google Scholar 

  • Biagini GA, ONeill PM, Nzila A et al (2003) Antimalarial chemotherapy: young guns or back to the future? Trends Parasitol 19(11):479–487

    Article  CAS  PubMed  Google Scholar 

  • Buchholz K, Burke TA, Williamson KC et al (2011) A high-throughput screen targeting malaria transmission stages opens new avenues for drug development. J Infect Dis 203(10):1445–1453

    Article  PubMed  PubMed Central  Google Scholar 

  • Burrows JN, Duparc S, Gutteridge WE et al (2017) New developments in anti-malarial target candidate and product profiles. Malar J 16:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Canduri F, Perez PC et al (2007) Protein kinases as targets for antiparasitic chemotherapy drugs. Curr Drug Targets 8(3):389–398

    Article  CAS  PubMed  Google Scholar 

  • Cowman AF, Morry MJ, Biggs BA et al (1988) Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc Natl Acad Sci U S A 85(23):9109–9113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui L, Mharakurwa S et al (2015) Antimalarial drug resistance: literature review and activities and findings of the ICEMR Network. Am J Trop Med Hyg 93(3 Suppl):57–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dembele L, Gego A, Zeeman AM et al (2011) Towards an in vitro model of Plasmodium hypnozoites suitable for drug discovery. PLoS One 3:e18162

    Article  Google Scholar 

  • Dhillon GP (2008) National Vector Borne Disease Control Programme—a glimpse. Directorate of National Vector Borne Disease Control Programme Directorate General of Health Services Ministry of Health & Family Welfare Government of India

    Google Scholar 

  • Flannery EL, Chatterjee AK, Winzeler EA (2013) Antimalarial drug discovery - approaches and progress towards new medicines. Nat Rev Microbiol 11(12):849–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelb MH, Hol WG (2002) Parasitology. Drugs to combat tropical protozoan parasites. Science 297(5580):343–344

    Article  CAS  PubMed  Google Scholar 

  • Gysin J (1998) In: Sherman I (ed) Malaria: parasite biology, pathogenesis and protection, vol 419. ASM, Washington DC, p 441

    Google Scholar 

  • Hassett MR, Roepe PD (2019) Origin and spread of evolving artemisinin-resistant Plasmodium falciparum malarial parasites in Southeast Asia. Am J Trop Med 101(6):1204

    Article  CAS  Google Scholar 

  • Huthmacher C, Hoppe A et al (2010) Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC Syst Biol 4:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Jana S, Paliwal J (2007) Novel molecular targets for antimalarial chemotherapy. Int J Antimicrob Agents 30(1):4–10

    Article  CAS  PubMed  Google Scholar 

  • Khera HK, Singh SK, Singh S (2019) Chorismate synthase from malaria parasites is bifunctional enzyme. Mol Biochem Parasitol 233:111202

    Article  CAS  PubMed  Google Scholar 

  • Khera HK, Singh SK et al (2016) Conserved cysteine residues in malaria Chorismate synthase indicate their important role in protein structure and function. Indian J Biochem Biophys 53:161–168

    CAS  Google Scholar 

  • Khera HK, Singh SK et al (2017) A HRMS-based method for determination of chorismate synthase activity. Protein Pept Lett 23(3):229–234

    Article  Google Scholar 

  • Korsinczky M, Chen N, Kotecka B et al (2000) Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob Agents Chemother 44(8):2100–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucchi NW, Oberstaller J, Kissinger JC et al (2013) Malaria diagnostics and surveillance in the post-genomic era. Public Health Genomics 16(1-2):37–43

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JS, Marquart L, Sekuloski S et al (2016) Linking murine and human Plasmodium falciparum challenge models in a translational path for antimalarial drug development. Antimicrob Agents Chemother 60:3669–3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mita T, Tanabe K (2012) Evolution of Plasmodium falciparum drug resistance: implications for the development and containment of artemisinin resistance. Jpn J Infect Dis 65(6):465–475

    Article  CAS  PubMed  Google Scholar 

  • Nallan L, Bauer KD, Bendale P et al (2005) Protein farnesyltransferase inhibitors exhibit potent antimalarial activity. J Med Chem 48(11):3704–3713

    Article  CAS  PubMed  Google Scholar 

  • Newby G, Bennett A, Larson E et al (2016) The path to eradication: a progress report on the malaria-eliminating countries. Lancet 387(10029):1775–1784

    Article  PubMed  Google Scholar 

  • Nguyen-Dinh P, Payne D (1980) Pyrimethamine sensitivity in Plasmodium falciparum: determination in vitro by a modified 48-hour test. Bull World Health Organ 58(6):909–912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira JS, Vasconcelos IB, Moreira IS et al (2007) Enoyl reductases as targets for the development of anti-tubercular and anti-malarial agents. Curr Drug Targets 8(3):399–411

    Article  CAS  PubMed  Google Scholar 

  • Operational Manual for Malaria Elimination in India (2016) (Version 1) Directorate of National Vector Borne Disease Control Programme Directorate General of Health Services Ministry of Health & Family Welfare Government of India

    Google Scholar 

  • Packard RM (2014) The origins of antimalarial-drug resistance. N Engl J Med 371:397–399

    Article  CAS  PubMed  Google Scholar 

  • Peatey CL, Spicer TP, Hodder PS et al (2011) A high-throughput assay for the identification of drugs against late-stage Plasmodium falciparum gametocytes. Mol Biochem Parasitol 180(2):127–131

    Article  CAS  PubMed  Google Scholar 

  • Peters W, Robinson BL (1999) In: Zak O, Sande M (eds) Handbook of animal models of infection. Academic Press, London, pp 757–773

    Chapter  Google Scholar 

  • Rosenthal PJ, Sijwali PS, Singh A et al (2002) Cysteine proteases of malaria parasites: targets for chemotherapy. Curr Pharm Des 8(18):1659–1672

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Sarma P, Sehgal R et al (2017) Development in assay methods for in vitro antimalarial drug efficacy testing: a systematic review. Front Pharmacol 23(8):754

    Article  Google Scholar 

  • Stone WJ, Eldering M, van Gemert GJ et al (2013) The relevance and applicability of oocyst prevalence as a read-out for mosquito feeding assays. Sci Rep 3:3418

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka TQ, Williamson KC (2011) A malaria gametocytocidal assay using oxidoreduction indicator, alamarBlue. Mol Biochem Parasitol 177(2):160–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trouiller P, Olliaro P, Torreele E (2002) Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet 359(9324):2188–2194

    Article  PubMed  Google Scholar 

  • Vieira MD, Kim MJ, Apparaju S et al (2014) PBPK model describes the effects of comedication and genetic polymorphism on systemic exposure of drugs that undergo multiple clearance pathways. Clin Pharmacol Ther 95:550–557

    Article  CAS  PubMed  Google Scholar 

  • Wadi I, Nath M, Anvikar AR et al (2019) Recent advances in transmission-blocking drugs for malaria elimination. Future Med Chem 11(23):3047–3089

    Article  CAS  PubMed  Google Scholar 

  • Wagner C, Pan Y, Hsu V et al (2015) Predicting the effect of cytochrome P450 inhibitors on substrate drugs: analysis of physiologically based pharmacokinetic modeling submissions to the US Food and Drug Administration. Clin Pharmacokinet 54:117–127

    Article  CAS  PubMed  Google Scholar 

  • Wagner C, Pan Y, Hsu V et al (2016) Predicting the effect of CYP3A inducers on the pharmacokinetics of substrate drugs using physiologically based pharmacokinetic (PBPK) modeling: an analysis of PBPK submissions to the US FDA. Clin Pharmacokinet 55:475–483

    Article  CAS  PubMed  Google Scholar 

  • Wengelnik K, Vidal V, Ancelin ML et al (2002) A class of potent antimalarials and their specific accumulation in infected erythrocytes. Science 295(5558):1311–1314

    Article  CAS  PubMed  Google Scholar 

  • White NJ (2004) Antimalarial drug resistance. J Clin Invest 113(8):1084–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White NJ, Pukrittayakamee S, Hien TT et al (2014) Malaria. Lancet 383(9918):723–735

    Article  PubMed  Google Scholar 

  • World Health Organization (2015) Guidelines for the treatment of malaria

    Google Scholar 

  • World Health Organization (2020) World malaria report

    Google Scholar 

Download references

Acknowledgements

HKK thank Tata Institute for Genetics and Society-Centre at inStem, Bengaluru for its continued support and providing a wonderful research environment.

Conflict of Interest

The authors declare no conflict of interest.

Authors Contribution

HKK conceived and wrote the manuscript. AKS contributed to figures. SS provided valuable inputs for the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvinder Kour Khera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khera, H.K., Srivastava, A.K., Singh, S. (2023). Antimalarial Drug Discovery and Development: From Bench to Bedside. In: Rajput, V.S., Runthala, A. (eds) Drugs and a Methodological Compendium . Springer, Singapore. https://doi.org/10.1007/978-981-19-7952-1_16

Download citation

Publish with us

Policies and ethics

Navigation