Atmospheric Oxidation and Secondary Particle Formation

  • Chapter
  • First Online:
Formation Mechanism and Control Strategies of Haze in China

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC,volume 66))

  • 182 Accesses

Abstract

With the acceleration of economic development and urbanization, air pollution is becoming increasingly severe in China. The results of a study in 2009 showed that nearly 30% of China’s land area and 500 million people were suffering from haze, especially in the Pan Bohai Sea, the Yangtze River Delta, and the Pearl River Delta. Since the 1970s, China has gradually carried out special research on the acid rain and photochemical smog, revealing that the root cause of these two types of pollution was the regional secondary pollution driven by the atmospheric oxidation. The monitoring results showed that the atmospheric concentration of nitrogen oxides (NOx), sulfur dioxide (SO2), and PM10 had been decreasing to varying degrees; however, the increase of ozone (O3) concentration and the occurrence of haze had not been effectively suppressed. The main driving force behind the conversion of the primary pollutants into the secondary pollutants is the hydroxyl (OH) radical. However, there is a lack of research on the chemical mechanism of the OH radical in complex air pollution currently, which limits our understanding of the causes of secondary pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    One part per trillion (1 ppt) is equal to 1 × 10−12.

  2. 2.

    One part per billion (1 ppb) is equal to 1 × 10−9.

References

  • Aiken AC, Decarlo PF, Kroll JH et al (2008) O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ Sci Technol 42(12):4478–4485

    Article  CAS  Google Scholar 

  • Allan JD, Williams PI, Morgan WT et al (2010) Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities. Atmos Chem Phys 10(2):647–668

    Article  CAS  Google Scholar 

  • Alves NDO, Brito J, Caumo S et al (2015) Biomass burning in the Amazon region: aerosol source apportionment and associated health risk assessment. Atmos Environ 120:277–285

    Article  CAS  Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cy 15(4):955–966

    Article  CAS  Google Scholar 

  • Asman WAH (1998) Factors influencing local dry deposition of gases with special reference to ammonia. Atmos Environ 32(3):415–421

    Article  CAS  Google Scholar 

  • Betha R, Spracklen DV, Balasubramanian R (2013) Observations of new aerosol particle formation in a tropical urban atmosphere. Atmos Environ 71:340–351

    Article  CAS  Google Scholar 

  • Bloss C, Wagner V, Jenkin ME et al (2005) Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons. Atmos Chem Phys 5:641–664

    Article  CAS  Google Scholar 

  • Bouwman AF, Lee DS, Asman WAH et al (1997) A global high-resolution emission inventory for ammonia. Global Biogeochem Cy 11(4):561–587

    Article  CAS  Google Scholar 

  • Breitner S, Liu L, Cyrys J et al (2011) Sub-micrometer particulate air pollution and cardiovascular mortality in Bei**g, China. Sci Total Environ 409:5196–5204

    Article  CAS  Google Scholar 

  • Bruns EA, El Haddad I, Slowik JG et al (2016) Identification of significant precursor gases of secondary organic aerosols from residential wood combustion. Sci Rep 6:27881

    Article  CAS  Google Scholar 

  • Burgard DA, Bishop GA, Stedman DH (2006) Remote sensing of ammonia and sulfur dioxide from on-road light duty vehicles. Environ Sci Technol 40(22):7018–7022

    Article  CAS  Google Scholar 

  • Calvert JG, Su F, Bottenheim JW et al (1978) Mechanism of the homogeneous oxidation of sulfur dioxide in the troposphere. Atmos Environ 12(1–3):197–226

    Article  CAS  Google Scholar 

  • Cao G, Jang M (2007) Effects of particle acidity and UV light on secondary organic aerosol formation from oxidation of aromatics in the absence of NOx. Atmos Environ 41(35):7603–7613

    Article  CAS  Google Scholar 

  • Cao GL, Zhang XY, Gong SL et al (2008) Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning. J Environ Sci 20(1):50–55

    Article  CAS  Google Scholar 

  • Cao GL, Zhang XY, Wang D et al (2005) Inventory of atmospheric pollutants discharged from biomass burning in China continent. China Environ Sci 25(4):389–393

    CAS  Google Scholar 

  • Chan CK, Yao X (2008) Air pollution in mega cities in China. Atmos Environ 42(1):1–42

    Article  CAS  Google Scholar 

  • Chen J, Li C, Ristovski Z et al (2017) A review of biomass burning: emissions and impacts on air quality, health and climate in China. Sci Total Environ 579:1000–1034

    Article  CAS  Google Scholar 

  • Cheng S, Lang J, Zhou Y et al (2013) A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM2.5 pollution in Bei**g. China Atmos Environ 79:308–316

    Article  CAS  Google Scholar 

  • Chirico R, DeCarlo PF, Heringa MF et al (2010) Impact of aftertreatment deviceson primary emissions and secondary organic aerosol formation potential from in use diesel vehicles: Results from smog chamber experiments. Atmos Chem Phys 10(23):11545–11563

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Fujita EM, et al (1994) Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmos Environ 28(12):2061–2080

    Google Scholar 

  • Christian TJ, Kleiss B, Yokelson RJ, et al (2003). Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels. J Geophys Res-Atmos 108(D23):4719

    Google Scholar 

  • Crilley LR, Jayaratne ER, Ayoko GA et al (2014) Observations on the formation, growth and chemical composition of aerosols in an urban environment. Environ Sci Technol 48(12):6588–6596

    Article  CAS  Google Scholar 

  • Crippa M, El Haddad I, Slowik JG et al (2013) Identification of marine and continental aerosol sources in Paris using high resolution aerosol mass spectrometry. J Geophys Res-Atmos 118(4):1950–1963

    Article  CAS  Google Scholar 

  • Cross ES, Sappok AG, Wong VW et al (2015) Load-dependent emission factors and chemical characteristics of IVOCs from a medium-duty diesel engine. Environ Sci Technol 49(22):13483–13491

    Article  CAS  Google Scholar 

  • Crounse JD, Knap HC, Ørnsø KB, et al (2012). Atmospheric fate of methacrolein. 1. Peroxy radical isomerization following addition of OH and O2. J Phys Chem A 116(24):5756–5762

    Google Scholar 

  • Crounse JD, Nielsen LB, Jørgensen S et al (2013) Autoxidation of organic compounds in the atmosphere. J Phys Chem Lett 4(20):3513–3520

    Article  CAS  Google Scholar 

  • Crounse JD, Paulot F, Kjaergaard HG et al (2011) Peroxy radical isomerization in the oxidation of isoprene. Phys Chem Chem Phys 13(30):13607–13613

    Article  CAS  Google Scholar 

  • Daly HM, Horn AB (2009) Heterogeneous chemistry of toluene, kerosene and diesel soots. Phys Chem Chem Phys 11(7):1069–1076

    Article  CAS  Google Scholar 

  • Deng W, Hu Q, Liu T et al (2017) Primary particulate emissions and secondary organic aerosol (SOA) formation from idling diesel vehicle exhaust in China. Sci Total Enrivon 593–594(1):462–469

    Article  Google Scholar 

  • Du Q, Zhang C, Mu Y et al (2016) An important missing source of atmospheric carbonyl sulfide: domestic coal combustion. Geophys Res Lett 43(16):8720–8727

    Article  Google Scholar 

  • Dupart Y, King SM, Nekat B et al (2012) Mineral dust photochemistry induces nucleation events in the presence of SO2. Proc Natl Acad Sci USA 109(51):20842–20847

    Article  CAS  Google Scholar 

  • Edney EO, Kleindienst TE, Jaoui M, et al (2005). Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States. Atmos Environ 39(29):5281–5289

    Google Scholar 

  • Fenske JD, Hasson AS, Ho AW et al (2000) Measurement of absolute unimolecular and bimolecular rate constants for CH3CHOO generated by the trans-2-butene reaction with ozone in the gas phase. J Phys Chem A 104(44):9921–9932

    Article  CAS  Google Scholar 

  • Fraser MP, Cass GR (1998) Detection of excess ammonia emissions from in-use vehicles and the implications for fine particle control. Environ Sci Technol 32(8):1053–1057

    Article  CAS  Google Scholar 

  • Fuchs H, Acir IH, Bohn B et al (2014) OH regeneration from methacrolein oxidation investigated in the atmosphere simulation chamber SAPHIR. Atmos Chem Phys 14(4):7895–7908

    Article  Google Scholar 

  • Fuchs H, Hofzumahaus A, Rohrer F et al (2013) Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation. Nat Geosci 6(12):1023–1026

    Article  CAS  Google Scholar 

  • Gentner DR, Isaacman G, Worton DR et al (2012) Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions. Proc Natl Acad Sci USA 109(45):18318–18323

    Article  CAS  Google Scholar 

  • Gordon TD, Presto AA, May AA, et al (2014a) Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles. Atmos Chem Phys 14(9):4661–4678

    Google Scholar 

  • Gordon TD, Presto AA, Nguyen NT, et al (2014b) Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle. Atmos Chem Phys 14(9):4643–4659

    Google Scholar 

  • Han C, Liu Y, He H (2013) Role of organic carbon in heterogeneous reaction of NO2 with soot. Environ Sci Technol 47(7):3174–3181

    Article  CAS  Google Scholar 

  • Han C, Liu Y, Ma J et al (2012) Key role of organic carbon in the sunlightenhanced atmospheric aging of soot by O2. Proc Natl Acad Sci USA 109(52):21250–21255

    Article  CAS  Google Scholar 

  • Hayes PL, Carlton AG, Baker KR et al (2015) Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010. Atmos Chem Phys 15(10):5773–5801

    Article  CAS  Google Scholar 

  • He H, Wang Y, Ma Q et al (2014) Mineral dust and NO2 promote the conversion of SO2 to sulfate in heavy pollution days. Sci Rep 4:4172

    Article  Google Scholar 

  • He KB, Yang FM, Ma YL, et al (2001) The characteristics of PM2.5 in Bei**g, China. Atmos Environ 35(29):4959–4970

    Google Scholar 

  • Heard DE, Carpenter LJ, Creasey DJ et al (2004) High levels of the hydroxyl radical in the winter urban troposphere. Geophys Res Lett 31(18):L18112

    Article  Google Scholar 

  • Hens K, Novelli A, Martinez M et al (2014) Observation and modelling of HOx radicals in a boreal forest. Atmos Chem Phys 14:8723–8747

    Article  Google Scholar 

  • Hofzumahaus A, Rohrer F, Lu K et al (2009) Amplified trace gas removal in the troposphere. Science 324(5935):1702–1704

    Article  CAS  Google Scholar 

  • Hosseini S, Urbanski SP, Dixit P et al (2013) Laboratory characterization of PM emissions from combustion of wildland biomass fuels. J Geophys Res-Atmos 118(17):9914–9929

    Article  CAS  Google Scholar 

  • Huang X, Song Y, Li MM, et al (2012a) A high-resolution ammonia emission inventory in China. Global Biogeochem Cy 26:GB1030

    Google Scholar 

  • Huang XF, He LY, Hu M et al (2011) Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an aerodyne high-resolution aerosol mass spectrometer. Atmos Chem Phys 11:1865–1877

    Article  CAS  Google Scholar 

  • Huang Y, Lee SC, Ho KF, et al (2012b) Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products. Atmos Environ 59:224–231

    Google Scholar 

  • Ianniello A, Spataro F, Esposito G et al (2011) Chemical characteristics of inorganic ammonium salts in PM2.5 in the atmosphere of Bei**g (China). Atmos Chem Phys 11:10803–10822

    Article  CAS  Google Scholar 

  • Jang MS, Czoschke NM, Lee S et al (2002) Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 298(5594):814–817

    Article  CAS  Google Scholar 

  • Jaoui M, Edney EO, Kleindienst TE, et al (2008) Formation of secondary organic aerosol from irradiated alpha-pinene/toluene/NOx mixtures and the effect of isoprene and sulfur dioxide. J Geophys Res-Atmos 113(D9)

    Google Scholar 

  • Jimenez JL, Canagaratna MR, Donahue NM et al (2009) Evolution of organic aerosols in the atmosphere. Science 326(5959):1525–1529

    Article  CAS  Google Scholar 

  • Jokinen T, Sipilä M, Richters S et al (2014) Rapid autoxidation forms highly oxidized RO2 radicals in the atmosphere. Angew Chem Int Edit 53(52):14596–14600

    Article  CAS  Google Scholar 

  • Kamm S, Möhler O, Naumann KH et al (1999) The heterogeneous reaction of ozone with soot aerosol. Atmos Environ 33(28):4651–4661

    Article  CAS  Google Scholar 

  • Kean AJ, Littlejohn D, Ban-Weiss GA et al (2009) Trends in on-road vehicle emissions of ammonia. Atmos Environ 43(8):1565–1570

    Article  CAS  Google Scholar 

  • Kim Oanh NT, Tipayarom A, Bich TL et al (2015) Characterization of gaseous and semi-volatile organic compounds emitted from field burning of rice straw. Atmos Environ 119:182–191

    Article  Google Scholar 

  • Kirkby J, Curtius J, Almeida J et al (2011) Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476:429–433

    Article  CAS  Google Scholar 

  • Klein F, Farren N, Bozzetti C et al (2016) Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential. Sci Rep 6:36623

    Article  CAS  Google Scholar 

  • Kleindienst TE, Edney EO, Lewandowski M et al (2006) Secondary organic carbon and aerosol yields from the irradiations of isoprene and α-pinene in the presence of NOx and SO2. Environ Sci Technol 40(12):3807–3812

    Article  CAS  Google Scholar 

  • Kolb CE, Cox RA, Abbatt JPD et al (2010) An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos Chem Phys 10(21):10561–10605

    Article  CAS  Google Scholar 

  • Kroll JH, Chan AWH, Ng NL et al (2007) Reactions of semivolatile organics and their effects on secondary organic aerosol formation. Environ Sci Technol 41(10):3545–3550

    Article  CAS  Google Scholar 

  • Kroll JH, Donahue NM, Jimenez JL et al (2011) Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat Chem 3:133–139

    Article  CAS  Google Scholar 

  • Kulmala M, Kontkanen J, Junninen H et al (2013) Direct observations of atmospheric aerosol nucleation. Science 339(6122):943–946

    Article  CAS  Google Scholar 

  • Lee BP, Li YJ, Yu JZ et al (2015) Characteristics of submicron particulate matter at the urban roadside in downtown Hong Kong—overview of 4 months of continuous high-resolution aerosol mass spectrometer measurements. J Geophys Res-Atmos 120(14):7040–7058

    Article  CAS  Google Scholar 

  • Leitte AM, Schlink U, Herbarth O, et al (2011). Size-segregated particle number concentrations and respiratory emergency room visits in Bei**g, China. Environ Health Perspect 119(4):508–513

    Google Scholar 

  • Lelieveld J, Heintzenberg J (1992) Sulfate cooling effect on climate through incloud oxidation of anthropogenic SO2. Science 258(5079):117–120

    Article  CAS  Google Scholar 

  • Lelièvre S, Bedjanian Y, Pouvesle N et al (2004) Heterogeneous reaction of ozone with hydrocarbon flame soot. Phys Chem Chem Phys 6(6):1181–1191

    Article  Google Scholar 

  • Li C, Hu Y, Zhang F et al (2017) Multi-pollutant emissions from the burning of major agricultural residues in China and the related health-economic effects. Atmos Chem Phys 17:4957–4988

    Article  Google Scholar 

  • Li X, Wang S, Duan L et al (2007) Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. Environ Sci Technol 41(17):6052–6058

    Article  CAS  Google Scholar 

  • Li X, Wang S, Duan L et al (2009) Characterization of non-methane hydrocarbons emitted from open burning of wheat straw and corn stover in China. Environ Res Lett 4(4):044015

    Article  Google Scholar 

  • Lisovskii A, Semiat R, Aharoni C (1997) Adsorption of sulfur dioxide by active carbon treated by nitric acid: I. Effect of the treatment on adsorption of SO2 and extractability of the acid formed. Carbon 35(10–11):1639–1643

    Google Scholar 

  • Liu Q, Li C, Li Y (2003) SO2 removal from flue gas by activated semi-cokes: 1. The preparation of catalysts and determination of operating conditions. Carbon 41(12):2217–2223

    Google Scholar 

  • Liu T, Wang X, Hu Q et al (2016) Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2. Atmos Chem Phys 16(2):675–689

    Article  CAS  Google Scholar 

  • Liu T, Wang X, Wang B et al (2014) Emission factor of ammonia (NH3) from on-road vehicles in China: tunnel tests in urban Guangzhou. Environ Res Lett 9(6):064027

    Article  CAS  Google Scholar 

  • Liu Y, Liu C, Ma J et al (2010) Structural and hygroscopic changes of soot during heterogeneous reaction with O3. Phys Chem Chem Phys 12(36):10896–10903

    Article  CAS  Google Scholar 

  • Liu Y, Shao M (2007) Estimation and prediction of black carbon emissions in Bei**g City. Chinese Sci Bull 52(9):1274–1281

    Article  CAS  Google Scholar 

  • Lizzio AA, DeBarr JA (1997) Mechanism of SO2 removal by carbon. Energy Fuels 11(2):284–291

    Article  CAS  Google Scholar 

  • Lockhart J, Blitz M, Heard D et al (2013) Kinetic study of the OH+glyoxal reaction: experimental evidence and quantification of direct OH recycling. J Phys Chem A 117(43):11027–11037

    Article  CAS  Google Scholar 

  • Longfellow CA, Ravishankara AR, Hanson DR (2000) Reactive and nonreactive uptake on hydrocarbon soot: HNO3, O3, and N2O5. J Geophys Res-Atmos 105(D19):24345–24350

    Article  CAS  Google Scholar 

  • Lu KD, Hofzumahaus A, Holland F et al (2013) Missing OH source in a suburban environment near Bei**g: observed and modelled OH and HO2 concentrations in summer 2006. Atmos Chem Phys 13(2):1057–1080

    Article  Google Scholar 

  • Lu KD, Rohrer F, Holland F et al (2012) Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: A missing OH source in a VOC rich atmosphere. Atmos Chem Phys 12(3):1541–1569

    Article  CAS  Google Scholar 

  • McCabe J, Abbatt JPD (2009) Heterogeneous loss of gas-phase ozone on n-hexane soot surfaces: similar kinetics to loss on other chemically unsaturated solid surfaces. J Phys Chem C 113(6):2120–2127

    Article  CAS  Google Scholar 

  • Meng ZY, Lin WL, Jiang XM, et al (2011) Characteristics of atmospheric ammonia over Bei**g, China. Atmos Chem Phys 11(12):6139–6151

    Google Scholar 

  • Metts T, Batterman S, Fernandes G et al (2005) Ozone removal by diesel particulate matter. Atmos Environ 39(18):3343–3354

    Article  CAS  Google Scholar 

  • Mohr C, DeCarlo PF, Heringa MF et al (2012) Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmos Chem Phys 12(4):1649–1665

    Article  CAS  Google Scholar 

  • Müller JO, Su DS, Jentoft RE et al (2005) Morphology-controlled reactivity of carbonaceous materials towards oxidation. Catal Today 102–103:259–265

    Article  Google Scholar 

  • Müller JO, Su DS, Wild U et al (2007) Bulk and surface structural investigations of diesel engine soot and carbon black. Phys Chem Chem Phys 9(30):4018–4025

    Article  Google Scholar 

  • Na K, Song C, Switzer C et al (2007) Effect of ammonia on secondary organic aerosol formation from α-pinene ozonolysis in dry and humid conditions. Environ Sci Technol 41(17):6096–6102

    Article  CAS  Google Scholar 

  • Nakao S, Shrivastava M, Nguyen A et al (2011) Interpretation of secondary organic aerosol formation from diesel exhaust photooxidation in an environmental chamber. Aerosol Sci Technol 45(8):964–972

    Article  CAS  Google Scholar 

  • Nehr S, Bohn B, Fuchs H et al (2011) HO2 formation from the OH plus benzene reaction in the presence of O2. Phys Chem Chem Phys 13(22):10699–10708

    Article  CAS  Google Scholar 

  • Nehr S, Bohn B, Wahner A (2012) Prompt HO2 formation following the reaction of OH with aromatic compounds under atmospheric conditions. J Phys Chem A 116(24):6015–6026

    Article  CAS  Google Scholar 

  • Nehr S, Bohn B, Dorn HP et al (2014) Atmospheric photochemistry of aromatic hydrocarbons: OH budgets during SAPHIR chamber experiments. Atmos Chem Phys 14(13):6941–6952

    Article  Google Scholar 

  • Nguyen TL, Vereecken L, Peeters J (2010) HOx regeneration in the oxidation of isoprene III: Theoretical study of the key isomerisation of the Z-δ-hydroxyperoxy isoprene radicals. Chem Phys Chem 11:3996–4001

    Article  CAS  Google Scholar 

  • Ni H, Han Y, Cao J et al (2015) Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China. Atmos Environ 123:399–406

    Article  CAS  Google Scholar 

  • Nordin E, Eriksson A, Roldin P et al (2013) Secondary organic aerosol formation from gasoline passenger vehicle emissions investigated in a smog chamber. Atmos Chem Phys 13(12):6101–6116

    Article  Google Scholar 

  • Odum JR, Jungkamp TPW, Griffin RJ, et al (1997a) The atmospheric aerosol-forming potential of whole gasoline vapor. Science 276(5309):96–99

    Google Scholar 

  • Odum JR, Jungkamp TPW, Griffin RJ, et al (1997b) Aromatics, reformulated gasoline, and atmospheric organic aerosol formation. Environ Sci Technol 31(7):1890–1897

    Google Scholar 

  • Ortega IK, Kurten T, Vehkamaki H et al (2008) The role of ammonia in sulfuric acid ion induced nucleation. Atmos Chem Phys 8(11):2859–2867

    Article  CAS  Google Scholar 

  • Ou XM, Zhang XL, Chang SY (2010) Scenario analysis on alternative fuel/vehicle for China’s future road transport: life-cycle energy demand and GHG emissions. Energy Policy 38(8):3943–3956

    Article  Google Scholar 

  • Peeters J, Nguyen TL, Vereecken L (2009) HOx radical regeneration in the oxidation of isoprene. Phys Chem Chem Phys 11(28):5935–5939

    Article  CAS  Google Scholar 

  • Pinder RW, Adams PJ, Pandis SN (2007) Ammonia emission controls as a costeffective strategy for reducing atmospheric particulate matter in the eastern United States. Environ Sci Technol 41(2):380–386

    Article  CAS  Google Scholar 

  • Pirjola L, Dittrich A, Niemi JV et al (2016) Physical and chemical characterization of real-world particle number and mass emissions from city buses in Finland. Environ Sci Technol 50:294–304

    Article  CAS  Google Scholar 

  • Platt SM, El Haddad I, Zardini AA et al (2013) Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmos Chem Phys 13(18):9141–9158

    Article  Google Scholar 

  • Praske E, Crounse JD, Bates KH et al (2015) Atmospheric fate of methyl vinyl ketone: Peroxy radical reactions with NO and HO2. J Phys Chem A 119(19):4562–4572

    Article  CAS  Google Scholar 

  • Presto AA, Miracolo MA, Kroll JH et al (2009) Intermediate-volatility organic compounds: a potential source of ambient oxidized organic aerosol. Environ Sci Technol 43(13):4744–4749

    Article  CAS  Google Scholar 

  • Robinson AL, Donahue NM, Shrivastava MK et al (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315(5816):1259–1262

    Article  CAS  Google Scholar 

  • Rogaski CA, Golden DM, Williams LR (1997) Reactive uptake and hydration experiments on amorphous carbon treated with NO2, SO2, O3, HNO3, and H2SO4. Geophys Res Lett 24(4):381–384

    Article  CAS  Google Scholar 

  • Rohrer F, Lu KD, Hofzumahaus A et al (2014) Maximum efficiency in the hydroxyl-radical-based self-cleansing of the troposphere. Nat Geosci 7:559–563

    Article  CAS  Google Scholar 

  • Rubio B, Izquierdo MT (1998) Low cost adsorbents for low temperature cleaning of flue gases. Fuel 77(6):631–637

    Article  CAS  Google Scholar 

  • Sanchis E, Ferrer M, Calvet S et al (2014) Gaseous and particulate emission profiles during controlled rice straw burning. Atmos Environ 98:25–31

    Article  CAS  Google Scholar 

  • Schauer JJ, Fraser MP, Cass GR et al (2002) Source reconciliation of atmospheric gas-phase and particle has epollutants during a severe photochemical smog episode. Environ Sci Technol 36(17):3806–3814

    Article  CAS  Google Scholar 

  • Shah SD, Cocker DR, Miller JW et al (2004) Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines. Environ Sci Technol 38(9):2544–2550

    Article  CAS  Google Scholar 

  • Shilling JE, Chen Q, King SM et al (2009) Loading-dependent elemental composition of α-pinene SOA particles. Atmos Chem Phys 9(3):771–782

    Article  CAS  Google Scholar 

  • Sipila M, Berndt T, Petaja T et al (2010) The role of sulfuric acid in atmospheric nucleation. Science 327(5970):1243–1246

    Article  Google Scholar 

  • Song C, Na K, Warren B et al (2007) Secondary organic aerosol formation from the photooxidation of p- and o-xylene. Environ Sci Technol 41(21):7403–7408

    Article  CAS  Google Scholar 

  • Stockwell CE, Veres PR, Williams J et al (2015) Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry. Atmos Chem Phys 15(2):845–865

    Article  Google Scholar 

  • Streets DG, Yarber KF, Woo JH et al (2003) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochem Cy 17(4):1099

    Article  Google Scholar 

  • Sun T, Wang Y, Zhang C et al (2011) The chemical mechanism of the limonene ozonolysis reaction in the SOA formation: a quantum chemistry and direct dynamic study. Atmos Environ 45(9):1725–1731

    Article  CAS  Google Scholar 

  • Sun Y, Wang Z, Fu P, et al (2013) Aerosol composition, sources and processes during wintertime in Bei**g, China. Atmos Chem Phys 13(9):4577–4592

    Google Scholar 

  • Tan Z, Lu K, Jiang M et al (2018) Exploring ozone pollution in Chengdu, southwestern China: a case study from radical chemistry to O3-VOC-NOx sensitivity. Sci Total Environ 636:775–786

    Article  CAS  Google Scholar 

  • Tian H, Dan Z (2011) Emission inventories of atmospheric pollutants discharged from biomass burning in China. Acta Sci Circum 31(2):349–357

    CAS  Google Scholar 

  • Tkacik DS, Lambe AT, Jathar S et al (2014) Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor. Environ Sci Technol 48(19):11235–11242

    Article  CAS  Google Scholar 

  • Tsang SC, Chen YK, Harris PJ et al (1994) A simple chemical method of opening and filling carbon nanotubes. Nature 372:159–162

    Article  CAS  Google Scholar 

  • Vander Wal RL, Tomasek AJ, Pamphlet MI et al (2004) Analysis of HRTEM images for carbon nanostructure quantification. J Nanopart Res 6(6):555–568

    Google Scholar 

  • Vander Wal RL, Tomasek AJ (2003) Soot oxidation: Dependence upon initial nanostructure. Combust Flame 134(1–2):1–9

    Google Scholar 

  • Wang HL, Lou SR, Huang C, et al (2014) Source profiles of volatile organic compounds from biomass burning in Yangtze River Delta, China. Aerosol Air Qual Res 14(3):818–828

    Google Scholar 

  • Wang X, Ding X, Fu X, et al (2012) Aerosol scattering coefficients and major chemical compositions of fine particles observed at a rural site in the central Pearl River Delta, South China. J Environ Sci 24(1):72–77

    Google Scholar 

  • Weitkamp EA, Sage AM, Pierce JR et al (2007) Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber. Environ Sci Technol 41(20):6969–6975

    Article  CAS  Google Scholar 

  • Welz O, Savee JD, Osborn DL et al (2012) Direct kinetic measurements of criegee intermediate (CH2OO) formed by reaction of CH2I with O2. Science 335(6065):204–207

    Article  CAS  Google Scholar 

  • Wu RR, Wang SN, Wang LM (2015) New mechanism for the atmospheric oxidation of dimethyl sulfide: the importance of intramolecular hydrogen shift in a CH3SCH2OO radical. J Phys Chem A 119(1):112–117

    Article  CAS  Google Scholar 

  • **ao R, Takegawa N, Kondo Y et al (2009) Formation of submicron sulfate and organic aerosols in the outflow from the urban region of the Pearl River Delta in China. Atmos Environ 43(24):3754–3763

    Article  CAS  Google Scholar 

  • Yang F, Tan J, Zhao Q, et al (2011) Characteristics of PM2.5 speciation in representative megacities and across China. Atmos Chem Phys 11(11):5207–5219

    Google Scholar 

  • Yang W, He H, Ma Q et al (2016) Synergistic formation of sulfate and ammonium resulting from reaction between SO2 and NH3 on typical mineral dust. Phys Chem Chem Phys 18(2):956–964

    Article  CAS  Google Scholar 

  • Ye PL, Ding X, Hakala J et al (2016) Vapor wall loss of semi-volatile organic compounds in a Teflon chamber. Aerosol Sci Technol 50(8):822–834

    Article  CAS  Google Scholar 

  • Yu L, Wang G, Zhang R, et al (2013) Characterization and source apportionment of PM2.5 in an urban environment in Bei**g. Aerosol Air Qual Res 13(2):574–583

    Google Scholar 

  • Zawadzki J (1978) IR spectroscopy studies of oxygen surface compounds on carbon. Carbon 16(6):491–497

    Article  CAS  Google Scholar 

  • Zawadzki J (1987a) Infrared studies of SO2 on carbons—I. Interaction of SO2 with carbon films. Carbon 25(3):431–436

    Google Scholar 

  • Zawadzki J (1987b) Infrared studies of SO2 on carbons—II. the SO2 species adsorbed on carbon films. Carbon 25(4):495–502

    Google Scholar 

  • Zelenay V, Monge ME, D’Anna B, et al (2011) Increased steady state uptake of ozone on soot due to UV/Vis radiation. J Geophys Res-Atmos 116(D11)

    Google Scholar 

  • Zhang P, Wanko H, Ulrich J (2007) Adsorption of SO2 on activated carbon for low gas concentrations. Chem Eng Technol 30(5):635–641

    Article  CAS  Google Scholar 

  • Zhang Q, He K, Huo H (2012) Policy: cleaning China’s air. Nature 484:161–162

    Article  CAS  Google Scholar 

  • Zhang Q, Stanier CO, Canagaratna MR et al (2004) Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectrometry. Environ Sci Technol 38(18):4797–4809

    Article  CAS  Google Scholar 

  • Zhang X, Schwantes RH, McVay RC et al (2015) Vapor wall deposition in Teflon chambers. Atmos Chem Phys 15(8):4197–4214

    Article  CAS  Google Scholar 

  • Zhang Y, Dou H, Chang B et al (2008) Emission of polycyclic aromatic hydrocarbons from indoor straw burning and emission inventory updating in China. Ann NY Acad Sci 1140(1):218–227

    Article  CAS  Google Scholar 

  • Zhang Y, Wang X, Wen S et al (2016) On-road vehicle emissions of glyoxal and methylglyoxal from tunnel tests in urban Guangzhou, China. Atmos Environ 127:55–60

    Article  CAS  Google Scholar 

  • Zhang YM, Zhang XY, Sun JY, et al (2011) Characterization of new particle and secondary aerosol formation during summertime in Bei**g, China. Tellus B 63(3):382–394

    Google Scholar 

  • Zhao X, Wang X, Ding X, et al (2014) Compositions and sources of organic acids in fine particles (PM2.5) over the Pearl River Delta region, south China. J Environ Sci 26(1):110–121

    Google Scholar 

  • Zhao Y, Liu Y, Ma J et al (2017) Heterogeneous reaction of SO2 with soot: the roles of relative humidity and surface properties of soot in surface sulfate formation. Atmos Environ 152:465–476

    Article  CAS  Google Scholar 

  • Zhao Y, Nguyen NT, Presto AA et al (2015) Intermediate volatility organic compound emissions from on-road diesel vehicles: chemical composition, emission factors, and estimated secondary organic aerosol production. Environ Sci Technol 49(19):11516–11526

    Article  CAS  Google Scholar 

  • Zheng X, Wu Y, Jiang J et al (2015) Characteristics of on-road diesel vehicles: black carbon emissions in Chinese cities based on portable emissions measurement. Environ Sci Technol 49(22):13492–13500

    Article  CAS  Google Scholar 

  • Zhu YJ, Sabaliauskas K, Liu XH et al (2014) Comparative analysis of new particle formation events in less and severely polluted urban atmosphere. Atmos Environ 98:655–664

    Article  CAS  Google Scholar 

  • Zotter P, El-Haddad I, Zhang Y et al (2014) Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex. J Geophys Res-Atmos 119(11):6818–6835

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, H., Wang, X., Wang, Y., Wang, Z., Liu, J., Chen, Y. (2023). Atmospheric Oxidation and Secondary Particle Formation. In: He, H., Wang, X., Wang, Y., Wang, Z., Liu, J., Chen, Y. (eds) Formation Mechanism and Control Strategies of Haze in China. Advanced Topics in Science and Technology in China, vol 66. Springer, Singapore. https://doi.org/10.1007/978-981-19-6956-0_2

Download citation

Publish with us

Policies and ethics

Navigation