Ship Trajectory Anomaly Detection Based on TCN Model

  • Conference paper
  • First Online:
Advances in Guidance, Navigation and Control ( ICGNC 2022)

Abstract

Ship trajectory data contains a lot of valuable information, but abnormal data is inevitably generated in the process of data acquisition. A Temporal Convolutional Network (TCN) model-based method for detecting ship trajectory anomalies is proposed in this paper to avoid adverse effects on subsequent data analysis. First, a sliding time window algorithm is designed to extract the trajectory-subsequence because ship trajectories are time-series data. Then input the normal trajectory to train the TCN model. The model will learn the kinematic characteristics of the normal trajectory. When inputting an abnormal trajectory, the model reconstructs the anomalous trajectory and detects the anomaly by the reconstruction error. In addition, the multi-dimensional features of the trajectory are analyzed, and the identification of anomalies is based on the reconstruction error of each feature. With a recall of 93.51 and an F1 score of 0.913, the algorithm has significantly improved its performance in comparison with the LSTM model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mao, S., Tu, E., Zhang, G., Rachmawati, L., Rajabally, E., Huang, G.-B.: An automatic identification system (AIS) database for maritime trajectory prediction and data mining. In: Cao, J., Cambria, E., Lendasse, A., Miche, Y., Vong, C.M. (eds.) Proceedings of ELM-2016. PALO, vol. 9, pp. 241–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-57421-9_20

    Chapter  Google Scholar 

  2. Shi, J.H., Liu, Z.J.: Deep learning in unmanned surface vehicles collision-avoidance pattern based on AIS big data with double GRU-RNN. J. Mar. Sci. Eng. 8(9), 682 (2020)

    Article  Google Scholar 

  3. Murray, B., Perera, L.P.: A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data. Ocean Eng. 209, 107478 (2020)

    Article  Google Scholar 

  4. Gaglione, D., et al.: Bayesian information fusion and multitarget tracking for maritime situational awareness. IET Radar Sonar Navig. 14(12), 1845–1857 (2020)

    Article  Google Scholar 

  5. Zhou, Y., Daamen, W., Vellinga, T., Hoogendoorn, S.P.: Ship classification based on ship behavior clustering from AIS data. Ocean Eng. 175, 176–187 (2019)

    Article  Google Scholar 

  6. Wu, J., Wu, C., Liu, W., Guo, J.: Automatic detection and restoration algorithm for trajectory anomalies of ship AIS. Navig. China 40(1), 8–12 (2017)

    Google Scholar 

  7. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier (2011)

    Google Scholar 

  8. Zhu, J., Jiang, W., Liu, A., Liu, G., Zhao, L.: Effective and efficient trajectory outlier detection based on time-dependent popular route. World Wide Web 20(1), 111–134 (2016). https://doi.org/10.1007/s11280-016-0400-6

    Article  Google Scholar 

  9. Barnett, V., Lewis, T.: Outliers in Statistical Data, 3rd edn. John Wiley & Sons, Chichester (1994)

    MATH  Google Scholar 

  10. Knorr, E.M., Ng, R.T.: Finding intensional knowledge of distance-based outliers. In: Vldb. Citeseer, vol. 99, pp. 211–222 (1999)

    Google Scholar 

  11. Nguyen, H., Tran, K.P., Thomassey, S., Hamad, M.: Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management. Int. J. Inf. Manage. 57, 102282 (2021)

    Article  Google Scholar 

  12. Liu, H., Liu, Y., Li, B., Qi, Z.: Ship abnormal behavior detection method based on optimized GRU network. J. Mar. Sci. Eng. 10(2), 249 (2022)

    Article  Google Scholar 

  13. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. ar**v preprint ar**v:1803.01271 (2018)

  14. Yan, J., Mu, L., Wang, L., Ranjan, R., Zomaya, A.Y.: Temporal convolutional networks for the advance prediction of ENSO. Sci. Rep. 10(1), 1–15 (2020)

    Article  Google Scholar 

  15. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. ar**v preprint ar**v:1511.07122 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, J., Zhang, H. (2023). Ship Trajectory Anomaly Detection Based on TCN Model. In: Yan, L., Duan, H., Deng, Y. (eds) Advances in Guidance, Navigation and Control. ICGNC 2022. Lecture Notes in Electrical Engineering, vol 845. Springer, Singapore. https://doi.org/10.1007/978-981-19-6613-2_341

Download citation

Publish with us

Policies and ethics

Navigation