Design of Wideband Metamaterial Absorber for X-Band Application

  • Conference paper
  • First Online:
Smart Energy and Advancement in Power Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 927))

  • 692 Accesses

Abstract

In this paper, an ultrathin Swastik shape unit cell structure of a metamaterial absorber (MA) is capable of increasing absorption in the X-band spectrum for a variety of applications. The structure of the MA is arranged periodically and has a swastika shape with lumped resistor resonator. In addition to having an intuitive design, the unit cell structure is able to absorb more than 80% of the desired band. The simulated result shows two absorption peaks at 5.05 and 12.60 GHz with more than 95% absorptivity. A proposed absorber provides absorption bandwidths between 4.19 and 13.33 GHz (9.14 GHz) in Full-Width Half Maxima (FWHM). An ultrathin absorber has a thickness of 0.035 mm, which is nearly λ/10 corresponding to the absorption central frequency of 8.67 GHz. The unit cell’s size of MA is 9 × 9 mm2, with a thickness of 3.2 mm (0.0346 λ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 267.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li C, **ao Z, Li W, Zou H (2018) Tunable multiband band-stop filter based on graphene metamaterial in the frequency. J Electromagn Waves Appl 32(18):2481–2489

    Article  Google Scholar 

  2. Bae KU, Kim H, Kim Y, Yang W-Y, Myung N-H (2016) Improvement of FDTD method regarding cloaking metamaterials by interpolation. J Electromagn Waves Appl 30(10):1366–1379

    Article  Google Scholar 

  3. Majid HA, Abd Rahim MK, Masri T (2009) Microstrip antenna’s gain enhancement using left-handed metamaterial structure. Prog Electromagn Res 8:235–247

    Google Scholar 

  4. Si L-M, Lv X (2008) CPW-fed multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications. Prog Electromagn Res 83:133–146

    Article  Google Scholar 

  5. Wang W, Yan F, Tan S, Zhou H, Hou Y (2017) Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators. Photonics Res 5(6):571–577

    Article  Google Scholar 

  6. Ranjan P, Choubey A, Mahto SK (2018) A novel approach for optimal design of multilayer wideband microwave absorber using wind driven optimization technique. AEU-Int J Electron Commun 83:81–87

    Article  Google Scholar 

  7. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

    Article  Google Scholar 

  8. Ranjan P, Choubey A, Mahto SK, Sinha R (2018) An ultrathin five band polarization insensitive metamaterial absorber having hexagonal array of 2d-bravais-lattice. Prog Electromagn Res 87:13–23

    Article  Google Scholar 

  9. Ranjan P, Choubey A, Mahto SK, Sinha R (2018) A six-band ultra-thin polarization-insensitive pixelated metamaterial absorber using a novel binary wind driven optimization algorithm. J Electromagn Waves Appl 32(18):2367–2385

    Article  Google Scholar 

  10. Ma B, Liu S, Bian B, Kong X, Zhang H, Mao Z, Wang B (2014) Novel three-band microwave metamaterial absorber. J Electromagn Waves Appl 28(12):1478–1486

    Article  Google Scholar 

  11. Qiu K, Feng S (2016) A novel metamaterial absorber with perfect wave absorption obtained by layout design. J Electromagn Waves Appl 30(4):523–535

    Article  Google Scholar 

  12. Tak J, Jeong E, Choi J (2017) Metamaterial absorbers for 24-GHz automotive radar applications. J Electromagn Waves Appl 31(6):577–593

    Article  Google Scholar 

  13. Ranjan P, Mahto SK, Choubey A (2019) BWDO algorithm and its application in antenna array and pixelated metasurface synthesis. IET Microw Antennas Propag 13(9):1263–1270

    Article  Google Scholar 

  14. Chaurasiya D, Ghosh S, Bhattacharyya S, Srivastava KV (2015) An ultrathin quad-band polarization-insensitive wide-angle metamaterial absorber. Microw Opt Technol Lett 57(3):697–702

    Article  Google Scholar 

  15. Zheng D, Cheng Y, Cheng D, Nie Y, Gong RZ (2013) Four-band polarization-insensitive metamaterial absorber based on flower-shaped structures. Prog In Electromagn Res 142:221–229

    Article  Google Scholar 

  16. Chen Z, Han N, Pan Z, Gong Y, Chong T, Hong M (2011) Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates. Opt Mater Express 1(2):151–157

    Article  Google Scholar 

  17. Costa F, Genovesi S, Monorchio A (2012) A chipless RFID based on multiresonant high-impedance surfaces. IEEE Trans Microw Theory Tech 61(1):146–153

    Article  Google Scholar 

  18. Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Advanced Materials 24(23):OP98–OP120

    Google Scholar 

  19. Smith DR, Padilla WJ, Vier D, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84(18):4184

    Article  Google Scholar 

  20. Skolnik MI (2008) Radar handbook. McGraw-Hill Education

    Google Scholar 

  21. Rufangura P (2015) Wide-band perfect metamaterial absorber for solar cells applications. Master’s thesis, Middle East Technical University

    Google Scholar 

  22. Wang C-M, Chang Y-C, Abbas MN, Shih M-H, Tsai DP (2009) T-shaped plasmonic array as a narrow-band thermal emitter or biosensor. Opt Express 17(16):13526–13531

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, P., Sinha, R., Choubey, A., Mahto, S.K., Pal, P., Kumar, R. (2023). Design of Wideband Metamaterial Absorber for X-Band Application. In: Namrata, K., Priyadarshi, N., Bansal, R.C., Kumar, J. (eds) Smart Energy and Advancement in Power Technologies. Lecture Notes in Electrical Engineering, vol 927. Springer, Singapore. https://doi.org/10.1007/978-981-19-4975-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4975-3_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4974-6

  • Online ISBN: 978-981-19-4975-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation