Mangrove Microbiomes: Biodiversity, Ecological Significance, and Potential Role in the Amelioration of Metal Stress

  • Chapter
  • First Online:
Understanding the Microbiome Interactions in Agriculture and the Environment
  • 563 Accesses

Abstract

The mangrove ecosystem through a rich productive ecosystem with a great diversity of flora and fauna both macro and micro is under the threat of severe pollution stress due to anthropogenic interference. Continuous input of pollutants is a major threat to this ecosystem affecting the indigenous microbial community playing a major role in the biogeochemical reactions and contributing to the richness of the biome. Being exposed to inputs from riverine sources which in turn receive huge amounts of pollutants in the form of industrial effluent discharge, agricultural runoff, domestic waste, sewage, etc., the major components in these discharges are pesticides, excessive inorganic compounds, high organic content, and metals. These pollutants especially the heavy metals tend to sink, have low solubility in water, and accumulate in the mangrove sediments, which act as the sinks for the heavy metals. Sediment contamination thus ultimately diminishes the mangrove ecosystem. Exposure to the pollutants especially heavy metals results in changes in the microbial communities with the prevalence of metal-tolerant species. This chapter uncovers the ecological aspects of mangrove sediments focusing on the metal-tolerant microbiome and its role in the maintenance of the biome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Kahtany K, El-Sorogy A, Al-Kahtany F, Youssef M (2018) Heavy metals in mangrove sediments of the central Arabian Gulf shoreline, Saudi Arabia. Arab J Geosci 11(7):155

    Article  CAS  Google Scholar 

  • Almahasheer H (2018) Spatial coverage of mangrove communities in the Arabian Gulf. Environ Monit Assess 190(2):85

    Article  PubMed  Google Scholar 

  • Almahasheer H (2019) High levels of heavy metals in Western Arabian Gulf mangrove soils. Mol Biol Rep 46(2):1585–1592

    Article  CAS  PubMed  Google Scholar 

  • Almasoud FI, Usman AI, Al-Farraj AS (2015) Heavy metals in the soils of the Arabian Gulf coast affected by industrial activities: analysis and assessment using enrichment factor and multivariate analysis. Arab J Geosci 8(3):1691–1703

    Article  CAS  Google Scholar 

  • Alongi DM (1996) The dynamics of benthic nutrient pools and fluxes in tropical mangrove forests. J Mar Res 54:123–148

    Article  CAS  Google Scholar 

  • Alongi DM (2002) Present state and future of the world's mangrove forests. Environ Conserv 29(3):331–349

    Article  Google Scholar 

  • Alvarez MB, Domini CE, Garrido M, Lista AG, Fernandez-Band BS (2011) Single-step chemical extraction procedures and chemometrics for assessment of heavy metal behaviour in sediment samples from the Bahia Blanca estuary, Argentina. J Soil Sediment 11(4):657–666

    Article  CAS  Google Scholar 

  • Alzubaidy H, Essack M, Malas TB, Bokhari A, Motwalli O, Kamanu FK, Jamhor SA, Mokhtar NA, Antunes A, Simões MF, Alam I, Bougouffa S, Lafi FF, Bajic VB, Archer JA (2016) Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea. Gene 576:626–636

    Article  CAS  PubMed  Google Scholar 

  • Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ (2014) Sulfur oxidation genes in diverse deep-sea viruses. Science 344(6185):757–760

    Article  CAS  PubMed  Google Scholar 

  • Andreote FD, Jimenez DJ, Chaves D, Dias ACF, Luvizotto DM, Dini-Andreote F (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS One 7:1–14

    Article  CAS  Google Scholar 

  • Asaeda T, Kalibbala M (2009) Modelling growth and primary production of the marine mangrove (Rhizophora apiculate BL): a dynamic approach. J Exp Mar Biol Ecol 371(2):103–111

    Article  Google Scholar 

  • Bakan G, Özkoc HB (2007) An ecological risk assessment of the impact of heavy metals in surface sediments on biota from the mid-Black Sea coast of Turkey. Int J Environ Study 64(1):45–57

    Article  CAS  Google Scholar 

  • Billings SA, Ziegler SE (2008) Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO2 and N fertilization. Glob Change Biol Bioenergy 14:1025–1036

    Article  Google Scholar 

  • Bodin N, N’Gom-Kâ R, Kâ S, Thiaw OT, De Morais LT, Le Loc’h F, Rozuel-Chartier E, Auger D, Chiffoleau JF (2013) Assessment of trace metal contamination in mangrove ecosystems from Senegal, West Africa. Chemosphere 90(2):150–157

    Article  CAS  PubMed  Google Scholar 

  • Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278

    Article  CAS  PubMed  Google Scholar 

  • Bouillon S, Dahdouh-Guebas F, Rao AVVS, Koedam N, Dehairs F (2003) Sources of organic carbon in mangrove sediments: variability and possible ecological implications. Hydrobiologia 495:33–39

    Article  CAS  Google Scholar 

  • Bowman JP (2015a) Methylobacter. In: Whitman WB (ed) Bergey’s manual of systematics of archaea and bacteria. Wiley, Hoboken, NJ

    Google Scholar 

  • Bowman JP (2015b) Methylomonas. In: Whitman WB (ed) Bergey’s manual of systematics of archaea and bacteria. Wiley, Hoboken, NJ

    Google Scholar 

  • Breithaupt JL, Smoak JM, Smith TJS, Sanders CJ, Hoare A (2012) Organic carbon burial rates in mangrove sediments: strengthening the global budget. Global Biogeochem Cycles 26:1–11

    Article  CAS  Google Scholar 

  • Cai M, Wang Y, Qiu C et al (2009) Heavy metals in surface sediments from mangrove zone in Zhangjiang River estuary, South China. In: Proceedings of the international conference on environmental science and information application technology (ESIAT ’09), IEEE Computer Society, Wuhan, China, vol 3, pp 34–38

    Google Scholar 

  • Cai Y, Zheng Y, Bodelier PL, Conrad R, Jia Z (2016) Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun 7:11728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell C (2008) Soil microbiology, ecology, and biochemistry. Soil Sci 59:1008–1009

    Article  Google Scholar 

  • Cantillo AY, Lauenstein GG, Connor TPO (1997) Mollusc and sediment contaminant levels and trends in South Florida coastal waters. Mar Pollut Bull 34(7):511–521

    Article  CAS  Google Scholar 

  • Chandrika V, Nair PVR, Khambhadkar LR (1990) Distribution of phototrophic thionic bacteria in the anaerobic and micro-aerophilic strata of mangrove ecosystem of Cochin. J Mar Biol Assoc India 32:77–84

    Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17:1111

    Article  CAS  Google Scholar 

  • Conrad R, Frenzel P, Cohen Y (1995) Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity. FEMS Microbiol Ecol 16:297–306

    Article  CAS  Google Scholar 

  • Córdova-kreylos AL, Cao Y, Green PG et al (2006) Diversity, composition, and geographical distribution of microbial communities in California Salt Marsh Sediments. Appl Environ Microbiol 72:3357–3366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das S, Ganguly D, Chakraborty S, Mukherjee A, Kumar De T (2018) Methane flux dynamics in relation to methanogenic and methanotrophic populations in the soil of Indian Sundarban mangroves. Mar Ecol 39(2):12493

    Article  CAS  Google Scholar 

  • De Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial. FEMS Microbiol 29:795–811

    Article  CAS  Google Scholar 

  • Defew LH, Mair JM, Guzman HM (2005) An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama. Mar Pollut Bull 50(5):547–552

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Cui X, Dumont MG (2016) Identification of active aerobic methanotrophs in plateau wetlands using DNA stable isotope probing. FEMS Microbiol Lett 363:fnw168

    Article  PubMed  CAS  Google Scholar 

  • Dhevendaran K (1984) Photosynthetic bacteria in the marine environment at Porto-Novo. Fish Technol 21:126–130

    Google Scholar 

  • Dias ACF, Pereira Silva MEC, Cotta SR, Dini-Andreote F, Soares FL Jr, Salles JF et al (2012) Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments. Appl Environ Microbiol 78:7960–7967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4(5):293–297

    Article  CAS  Google Scholar 

  • El-Sorogy AS, Tawfik M, Almadani SA, Attiah A (2016) Assessment of toxic metals in coastal sediments of the Rosetta area, Mediterranean Sea, Egypt. Environ Earth Sci 75(5):398

    Article  CAS  Google Scholar 

  • Enya O, Heaney N, Iniama G, Lin C (2020) Effects of heavy metals on organic matter decomposition in inundated soils: microcosm experiment and field examination. Sci Total Environ 724:138223

    Article  CAS  PubMed  Google Scholar 

  • Feller IC, Lovelock CE, Berger U, McKee KL, Joye SB, Ball MC (2010) Biocomplexity in mangrove ecosystems. Annu Rev Mar Sci 2:395–417

    Article  CAS  Google Scholar 

  • Feng J, ZhuX WH, Ning C, Lin G (2017) Distribution and ecological risk assessment of heavy metals in surface sediments of a typical restored mangrove-aquaculture wetland in Shenzhen, China. Mar Pollut Bull 124

    Google Scholar 

  • Fernandes L, Nayak GN, Ilangovan D (2012a) Geochemical assessment of metal concentrations in mangrove sediments along Mumbai Coast, India. World Acad Sci Eng Technol 61(1):258–263

    Google Scholar 

  • Fernandes SO, Michotey VD, Guasco S, Bonin PC (2012b) LokaBharathi, P.A. Denitrification prevails over anammox in tropical mangrove sediments (Goa, India). Mar Environ Res 74:9–19

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Cadena JC, Andrade S, Silva-Coello CL, De la Igle-sia R (2014) Heavy metal concentration in mangrove surface sediments from the north-west coast of South America. Mar Pollut Bull 82(1):221–226

    Article  PubMed  CAS  Google Scholar 

  • Frossard A, Hartmann M, Frey B (2017) Tolerance of the forest soil microbiome to increasing mercury concentrations. Soil Biol Biochem 105:162–176

    Article  CAS  Google Scholar 

  • Ganguli S, Rahaman S, Bera AR, Vishal V, Malik S, Roopalakshmi K, Singh PK (2017) Rhizospheric metagenome of the terrestrial mangrove fern Acrostichum from Indian Sunderbans. Genomics Data 14:53–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao X, Chen CTA (2012) Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res 46(6):1901–1911

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Dey N, Bera A (2010) Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarbans, India. Saline Syst 6:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giani L, Bashan Y, Holguin G, Strangmann A (1996) Characteristics and methanogenesis of the Balandra lagoon mangrove soils, Baja California Sur, Mexico. Geoderma 72:149–160

    Article  CAS  Google Scholar 

  • Giannopoulos G, Lee DY, Neubauer SC, Brown BL, Franklin RB (2019) A simple and effective sampler to collect undisturbed cores from tidal marshes. bioRxiv 515825

    Google Scholar 

  • Gopalakrishnan G, Wang S, Mo L, Zou J, Zhou Y (2020) Distribution determination, risk assessment, and source identification of heavy metals in mangrove wetland sediments from Qi’ao Island, South China. Reg Stud Mar Sci 33:100961

    Google Scholar 

  • Hao X, Zhu J, Rensing C, Lui Y, Gao S, Chen W, Huang Q, Liu (2021) Recent advances in exploring the heavy metal(loid) resistant microbiome. Comput Struct Biotechnol J 19:94–109

    Article  CAS  PubMed  Google Scholar 

  • Ho A, Mo YL, Lee HJ, Sauheitl L, Jia ZJ, Horn MAE (2018) Effect of salt stress on aerobic methane oxidation and associated methanotrophs; a microcosm study of a natural community from a non-saline environment. Soil Biol Biochem 125:210–214

    Article  CAS  Google Scholar 

  • Holguin G (1992) Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: their isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. FEMS Microbiol Ecol 101:207–216

    CAS  Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fert Soils 33:265–278

    Article  CAS  Google Scholar 

  • Ikenaga M, Guevara R, Dean AL et al (2010) Changes in community structure of sediment bacteria along the Florida Coastal Everglades Marsh-Mangrove-Seagrass salinity gradient. Microbial Ecol 59:284–295

    Article  Google Scholar 

  • Jaiswal D, Pandey J (2019) Carbon dioxide emission coupled extracellular enzyme activity at land-water interface predict C-eutrophication and heavy metal contamination in Ganga River, India. Ecol Indic 99:349–364

    Article  CAS  Google Scholar 

  • Kandasamy KA (2000) Review of studies on Pichavaram mangrove, Southeast India. Hydrobiologia 430:185–205

    Article  Google Scholar 

  • Kong Q, Wang ZB, Shu L, Miao M-S (2015) Characterization of the extracellular polymeric substances and microbial community of aerobic granulation sludge exposed to cephalexin. Int Biodeterior Biodegradation 102:375–382

    Article  CAS  Google Scholar 

  • Kristensen E, Holmer M, Bussarawit N (1991) Benthic metabolism and sulfate reduction in a south-east Asian mangrove swamp. Mar Ecol Prog Ser 73:93–103

    Article  CAS  Google Scholar 

  • Kristensen E, Holmer M, Banta G, Jensen MH, Hansen K (1995) Carbon, nitrogen and sulfur cycling in sediments of the Ao Nam Bor mangrove forest, Phuket, Thailand: a review. Phuket Mar Biol Cent Res Bull 60:37–64

    Google Scholar 

  • Lee SY (1998) Ecological role of grapsid crabs in mangrove ecosystems: a review. Mar Freshw Res 49:335–343

    Article  Google Scholar 

  • Li R, Chai M, Qiu GY (2016) Distribution, fraction, and ecological assessment of heavy metals in sediment—plant system in Man-grove Forest, South China Sea. PLoS One 11(1):e0147308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Yandong Q, Jiao G, Life W, Lui Z (2020) Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management. Sci Total Environ 749:141555

    Article  CAS  PubMed  Google Scholar 

  • Liu YR, Delgado-Baquerizo M, Bi L et al (2018) Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China. Microbiome 6:183

    Article  PubMed  PubMed Central  Google Scholar 

  • Loka Bharathi PA, Oak S, Chandramohan D (1991) Sulfate-reducing bacteria from mangrove swamps II: their ecology and physiology. Oceanol Acta 14:163–171

    Google Scholar 

  • Lopez S, Piutti S, Vallance J, Jean-Louis M, Echevarria G, Benizri E (2017) Nickel drives bacterial community diversity in the rhizosphere of the hyperaccumulator Alyssum murale. Soil Biol Biochem 114:121–130

    Article  CAS  Google Scholar 

  • Lüke C, Frenzel P (2011) Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies. Appl Environ Microbiol 77:6305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacFarlane GR, Burchett MD (2002) Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Mar Environ Res 54(1):65–84

    Article  CAS  PubMed  Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (2000) Environmental microbiology. Academic Press, San Diego, CA

    Google Scholar 

  • Mann FD, Steinke TD (1989) Biological nitrogen fixation (acetylene reduction) associated with green algal (cyanobacterial) communities in the Beachwood Mangrove Nature Reserve. 1. The effect of environmental factors on acetylene reduction activity. S Afr J Bot 55:438–444

    Article  Google Scholar 

  • Marty DG (1985) Description de quatresouchesmethanogenes thermotolerantesisolees de sediments marinsouintertidaux. C R Acad Sci III 300:545–548

    Google Scholar 

  • Mendes L, Tsai S (2014) Variations of bacterial community structure and composition in mangrove sediment at different depths in Southeastern Brazil. Diversity 6:827–843

    Article  Google Scholar 

  • Mentzer JL, Goodman RM, Balser TC (2006) Microbial response over time to hydrologic and fertilization treatments in a simulated wet prairie. Plant Soil 284:85–100

    Article  CAS  Google Scholar 

  • Mohanraju R, Natarajan R (1992) Methanogenic bacteria in mangrove sediments. Hydrobiologia 247:187–193

    Article  CAS  Google Scholar 

  • Mohanraju R, Rajagopal BS, Daniels L, Natarajan R (1997) Isolation and characterization of a methanogenic bacterium from mangrove sediments. J Mar Biotechnol 5:147–152

    Google Scholar 

  • Morrissey EM, Berrier DJ, Neubauer SC, Franklin RB (2014a) Using microbial communities and extracellular enzymes to link soil organic matter characteristics to greenhouse gas production in a tidal freshwater wetland. Biogeochemistry 117:473–490

    Article  CAS  Google Scholar 

  • Morrissey EM, Gillespie JL, Morina JC, Franklin RB (2014b) Salinity affects microbial activity and soil organic matter content in tidal wetlands. Glob Chang Biol 20:1351–1362

    Article  PubMed  Google Scholar 

  • Mwevura H, Othman OC, Mhehe GL (2002) Organochlorine pesticide residues in sediments and biota from the coastal area of Dar es Salaam city, Tanzania. Mar Pollut Bull 45:262–267

    Article  CAS  PubMed  Google Scholar 

  • Nath B, Birch G, Chaudhuri P (2013) Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites. Sci Total Environ 463–464:667–674

    Article  PubMed  CAS  Google Scholar 

  • Nedwell DB, Blackburn TH, Wiebe WJ (1994) Dynamic nature of the turnover of organic carbon, nitrogen and sulphur in the sediments of a Jamaican mangrove forest. Mar Ecol Prog Ser 110:223–223

    Article  CAS  Google Scholar 

  • Nellemann C, Corcoran E, Duarte CM, Valdrés L, Young CD, Fonseca L, Grimsditch G (2009) Blue carbon—the role of healthy oceans in binding carbon. A rapid response assessment. UN Environment, GRID-Arendal

    Google Scholar 

  • Nobi EP, Dilipan E, Thangaradjou T, Sivakumar K, Kannan L (2010) Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar Coast Shelf Sci 87(2):253–264

    Article  CAS  Google Scholar 

  • Nordhaus I, Wolff M, Diele K (2006) Litter processing and population food intake of the mangrove crab Ucidescordatus in a high intertidal forest in northern Brazil. Estuar Coast Shelf Sci 67(1–2):239–250

    Article  Google Scholar 

  • Plugge CM, Zhang W, Scholten JCM, Stams AJM (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:1–8

    Article  CAS  Google Scholar 

  • Ragavan P, Mohan PM, Saxena A, Jayaraj RSC, Ravichandran K, Saxena M (2016) Mangrove floristics of the Andaman and Nicobar Islands: critical review and current scenario. Mar Biodivers 48:1291–1311

    Article  Google Scholar 

  • Rajapaksha RM, Tobor-Kaplon MA, Baath E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70(5):2966–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramamurthy T, Raju RM, Natarajan R (1990) Distribution and ecology of methanogenic bacteria in mangrove sediments of Pitchavaram, East coast of India. Indian J Mar Sci 19:269–273

    CAS  Google Scholar 

  • Ren Z, Zhang X, Wang X et al (2015) AChE inhibition: one dominant factor for swimming behavior changes of Daphnia magna under DDVP exposure. Chemosphere 120:252–257

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Monroy VH, Twilley RR (1996) The relative role of denitrification and immobilization in the fate of inorganic nitrogen in mangrove sediments (Terminos Lagoon, Mexico). Limnol Oceanogr 41:284–296

    Article  CAS  Google Scholar 

  • Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, Poulos BT, Solonenko N, Lara E, Poulain J (2016) Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537(7622):689

    Article  CAS  PubMed  Google Scholar 

  • Saxena D, Loka-Bharathi PA, Chandramohan D (1988) Sulfate reducing bacteria from mangrove swamps of Goa, central west coast of India. Indian J Mar Sci 17:153–157

    Google Scholar 

  • Sherman RE, Fahey TJ, Howarth RW (1998) Soil-plant interactions in a neotropical mangrove forest: iron, phosphorus and sulfur dynamics. Oecologia 115:553–563

    Article  PubMed  Google Scholar 

  • Shiau YJ, Cai YF, Lin YT, Jia Z, Chiu CY (2017) Community structure of active aerobic methanotrophs in Red Mangrove (Kandelia obovata) soils under different frequency of tides. Microb Ecol 75:761–770

    Article  PubMed  Google Scholar 

  • Shiau YJ, Cai YF, Jia ZJ, Chen CL, Chiu CY (2018) Phylogenetically distinct methanotrophs modulate methane oxidation in rice paddies across Taiwan. Soil Biol Biochem 124:59–69

    Article  CAS  Google Scholar 

  • Sierocinski P, Bayer F, Yvon-Durocher G, Burdon M, Grosskopf T, Alston M, Swarbreck D, Hobbs PJ, Soyer OS, Buckling A (2018) Biodiversity-function relationships in methanogenic communities. Mol Ecol 27:4641–4651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skov MW, Hartnoll RG (2002) Paradoxical selective feeding on a low-nutrient diet: why do mangrove crabs eat leaves? Oecologia 131:1–7

    Google Scholar 

  • Song I, Shen Q, Wang L, Qiu G, Shi J, Xu J, Brookes P, Liu X (2018) Effects of Cd, Cu, Zn and their combined action on microbial biomass and bacterial community structure. Environ Pollut 243:510–518

    Article  CAS  PubMed  Google Scholar 

  • Stewart AR (1999) Accumulation of Cd by a freshwater mussel (Pyganodongrandis) is reduced in the presence of Cu, Zn, Pb, and Ni. Can J Fish Aquat Sci 56(3):467–478

    Article  CAS  Google Scholar 

  • Strangmann A, Noormann M, Bashan Y, Giani L (1999) Methane dynamics in natural and disturbed mangrove soils (tropical salt marshes) in Baja California Sur, Mexico Annual meeting of the German Soil Science Society, 6-14.9.1999, Hannover, Germany

    Google Scholar 

  • Sul WJ, Asuming-Brempong S, Wang Q, Tourlousse DM, Penton CR, Deng Y, Rodrigues JLM, Adiku SGK, Jones JW, Zhou J, Cole JR, Tiedje JM (2013) Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. Soil Biol Biochem 65:33–38

    Article  CAS  Google Scholar 

  • Troxler TG, Ikenaga M, Scinto L et al (2012) Patterns of soil bacteria and canopy community structure related to tropical peatland development. Wetlands 32:769–782

    Article  Google Scholar 

  • Twilley RR, Chen RH, Hargis T (1992) Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut 64:265–288

    Article  CAS  Google Scholar 

  • Twilley RR, Pozo M, Garcia VH, Rivera-Monroy VH, Zambrano R, Bodero A (1997) Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador. Oecologia 111:109–122

    Article  PubMed  Google Scholar 

  • Unger IM, Kennedy AC, Muzika RM (2009) Flooding effects on soil microbial communities. Appl Soil Ecol 42:1–8

    Article  Google Scholar 

  • US EPA (United States Environmental Protection Agency) (n.d.) Contaminated sediment remediation guidance for hazardous waste sites. Office of Solid Waste and Emergency Response. EPA-540-R-05-012. OSWER, 9355:1–85

    Google Scholar 

  • Usman AR, Alkredaa RS, Al-Wabel MI (2013) Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicol Environ Saf 97:263–270

    Article  CAS  PubMed  Google Scholar 

  • van der Valk AG, Attiwill PM (1984) Acetylene reduction in an Avicennia marina community in Southern Australia. Aust J Bot 32:157–164

    Article  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Vethanayagam RR (1991) Purple photosynthetic bacteria from a tropical mangrove environment. Mar Biol 110:161–163

    Article  Google Scholar 

  • Vethanayagam RR, Krishnamurthy K (1995) Studies on anoxygenic photosynthetic bacterium Rhodopseudomonas sp. from the tropical mangrove environment. Indian J Mar Sci 24:19–23

    CAS  Google Scholar 

  • Wafar S, Untawele A, Wafar M (1997) Litter fall and energy flux in a mangrove ecosystem. Estuar Coast Shelf Sci 44:111–124

    Article  Google Scholar 

  • Walters BB, Rönnbäck P, Kovacs JM, Crona B, Hussain SA, Badola R, Primavera JH, Barbier E, Dahdouh-Guebas F (2008) Ethnobiology, socio-economic and management of mangrove forests: a review. Aquat Bot 89(2):220–236

    Article  Google Scholar 

  • Wang LE, Sousa WP (2009) Distinguishing mangrove species with laboratory measurements of hyperspectral leaf reflectance. Int J Remote Sens 30(5):1267–1281

    Article  Google Scholar 

  • Wang L, Ren Z, Kim H, **a C, Fu R, Chon T-S (2015) Characterizing response behavior of medaka (Oryziaslatipes) under chemical stress based on self-organizing map and filtering by integration. Ecol Inform 29(2):107–118

    Article  CAS  Google Scholar 

  • Wang J, Du H, Xu Y, Chen K, Liang J, Ke H, Cheng S-Y, Liu M, Deng H, He T, Wang W, Cai M (2016) Environmental and ecological risk assessment of trace metal contamination in mangrove ecosystems: a case from Zhangjiangkou Mangrove National Nature Reserve, China. BioMed Res Int 2016:2167053

    PubMed  PubMed Central  Google Scholar 

  • Wright DA, Welbourn P (2002) Environmental toxicology, vol 11. Cambridge University Press, Cambridge, p 656

    Book  Google Scholar 

  • Yin L, Yang H, Si G et al (2016) Persistence parameter: a reliable measurement for behavioral responses of medaka (Oryzias latipes) to environmental stress. Environ Model Assess 21(1):159–167

    Article  Google Scholar 

  • York A (2017) Marine microbiology: algal virus boosts nitrogen uptake in the ocean. Nat Rev Microbiol 15(10):573

    Article  CAS  PubMed  Google Scholar 

  • Youssef M, El-Sorogy A, Al Kahtany K, Al Otiaby N (2015) Environmental assessment of coastal surface sediments at Tarut Island, Arabian Gulf (Saudi Arabia). Mar Pollut Bull 96(1–2):424–433

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Yuan X, Zhao Y, Hu G, Tu X (2008) Heavy metal pollution in intertidal sediments from Quanzhou Bay, China. J Environ Sci 20(6):664–669

    Article  CAS  Google Scholar 

  • Yu X, Yang X, Wu Y, Peng Y, Yang T, **ao F, He Z (2020) Sonneratiaapetala introduction alters methane cycling microbial communities and increases methane emissions in mangrove ecosystems. Soil Biol Biochem 144:107775

    Article  CAS  Google Scholar 

  • Yuan HZ, Shen J, Liu EF, Wang JJ, Meng XH (2011) Assessment of nutrients and heavy metals enrichment in surface sediments from Taihu Lake, a eutrophic shallow lake in China. Environ Geochem Health 33:67–81

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Wei W, Cai L (2014) The fate and biogeochemical cycling of viral elements. Nat Rev Microbiol 12(12):850

    Article  CAS  PubMed  Google Scholar 

  • Zhang C-J, Pan J, Duan C-H, Wang Y-M, Liu Y, Sun J, Zhou H-C, Song X, Li M (2019) Prokaryotic diversity in mangrove sediments across south-eastern China fundamentally differs from that in other biomes. mSystems 4:e00442-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao XQ, Huang J, Lu J, Sun Y (2019) Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotoxicol Environ Saf 170:218–226

    Article  CAS  PubMed  Google Scholar 

  • Zhou DN et al (2013) Effects of heavy metal pollution on microbial communities and activities of mining soils in Central Tibet, China. J Food Agric Environ 11(1):676–681

    CAS  Google Scholar 

  • Zogg GP, Zak DR, Ringelberg DB et al (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481

    Article  CAS  Google Scholar 

  • Zuberer DA, Silver WS (1978) Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Appl Environ Microbiol 35:567–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to their respective institutions for their encouragement and support.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanda V. Berde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berde, C.V., Giriyan, A., Berde, V.B., Bramhachari, P.V. (2022). Mangrove Microbiomes: Biodiversity, Ecological Significance, and Potential Role in the Amelioration of Metal Stress. In: Veera Bramhachari, P. (eds) Understanding the Microbiome Interactions in Agriculture and the Environment. Springer, Singapore. https://doi.org/10.1007/978-981-19-3696-8_4

Download citation

Publish with us

Policies and ethics

Navigation