Finite Element of Biomechanical Model of the Human Myocardium from a Cardiac MRI Images

  • Conference paper
  • First Online:
Proceedings of Seventh International Congress on Information and Communication Technology

Abstract

Biomechanical models of the myocardium provide more details of the heart behavior and several biomechanical parameters. Thus, biomechanical heart models are important for improving clinical treatment and interventions for patients with heart failure. The aims of this study are to present a biomechanical human left ventricle (LV) models that are derived from clinical imaging data of 20 healthy subjects. End-systolic volume (ESV), end-diastolic volume (EDV), and end-diastole wall thickness from 20 health subjects were computed using cardiac CMR data and personalized cardiac modeling. The results reveal that the computed parameters are in accordance with the normal values of healthy subjects. The outcome of this study suggests that the proposed 3D model of the LV is able to describe the physiological function of the heart and to differentiate between normal and pathological heart function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Richardson WJ et al (2015) Physiological implications of myocardial scar structure. Compr Physiol 5(4):1877–1909

    Google Scholar 

  2. Wang VY, Nielsen PM, Nash MP (2015) Image-based predictive modeling of heart mechanics. Annu Rev Biomed Eng 351–383

    Google Scholar 

  3. ** J, Lamata P, Niederer S, Land S, Shi W, Zhuang X et al (2013) The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med Image Anal 17(2):133–146

    Article  Google Scholar 

  4. Baillargeon B, Rebelo N, Fox D, Taylor R, Kuhl E (2014) The living heart project: a robust andante grative simulator for human heart function. Eur J Mech A Solids 48:38–47

    Article  MathSciNet  Google Scholar 

  5. Nash MP, Hunter PJ (2000) Computational mechanics of the heart. J Elast 61:113–141

    Article  Google Scholar 

  6. Guccione JM, Moonly SM, Moustakidis P, Costa KD, Moulton MJ, Ratcliffe MB (2001) Mechanism underlying mechanical dysfunction inner the border zone of left ventricular aneurysm: a finite element model study. Ann Thorac Surg 71(2):654–662

    Article  Google Scholar 

  7. Wang H, Gao H, Luo X, Berry C, Griffith B, Ogden R, Wang T (2013) Structure-based finite strain modelling of the human left ventricle in diastole. Int J Numer Method Biomed Eng 29:83–103

    Article  MathSciNet  Google Scholar 

  8. Gao H, Carrick D, Berry C, Griffith B, Luo X (2014) Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method. IMA J Appl Math 79:978–1010

    Article  MathSciNet  Google Scholar 

  9. Gao H, Aderhold A, Mangion K, Luo X, Husmeier D, Berry C (2014) Advances in computational modelling for personalised medicine after myocardial infarction. J R Soc Interface 14(132):23

    Google Scholar 

  10. Gao H, Aderhold A, Mangion K, Luo X, Husmeier D, Berry C (2017) Changes and classification in myocardial contractile function in the left ventricle following acute myocardial infarction. J R Soc Interface 14(132):3–6

    Article  Google Scholar 

  11. Guccione JM, McCulloch AD, Waldman LK (1991) Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng 113(1):42–55

    Article  Google Scholar 

  12. Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans A Math Phys Eng Sci 367(1902):3445–3475

    MathSciNet  MATH  Google Scholar 

  13. Bestel J, Clément F, Sorine M (2001) A biomechanical model of muscle contraction. In: Niessen WJ, Viergever MA (eds) Medical image computing and computer-assisted intervention MICCAI 2001. Springer, Berlin Heidelberg, pp 1159–1161

    Chapter  Google Scholar 

  14. Walker JC, Ratcliffe MB, Zhang P, Wallace AW, Fata B, Hsu EW et al (2005) MRI-based finite-element analysis of left ventricular aneurysm. Am J Physiol Heart Circ Physiol 289(2):692–700

    Article  Google Scholar 

  15. Rumindo G, Ohayon J, Croisille P, Clarysse P (2020) In vivo estimation of normal left ventricular stiffness and contractility based on routine cine MR acquisition. IPEM, 1350–4533

    Google Scholar 

  16. Asner L, Hadjicharalambous M, Chabiniok R, Peressutti D, Sammut E, Wong J et al (2017) Patient-specific modeling for left ventricular mechanics using data-driven boundary energies. Comput Methods Appl Mech Eng 314:269–295

    Google Scholar 

  17. Marchesseau S, Delingette H, Sermesant M, Cabrera-Lozoya R, Tobon-Gomez C, Moireau P et al (2013) Personalization of a cardiac electromechanical model using reduced order unscented kalman filtering from regional volumes. Med Image Anal 17(7):816–829

    Article  Google Scholar 

  18. Wenk JF, Zhang Z, Cheng G, Malhotra D, Bolton GA, Burger M, Suzuki T, Saloner D, Wallace A, Guccione J et al (2010) First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann Thorac Surg 89:1546–1554

    Google Scholar 

  19. Cain AP, Ahl R, Hedstrom E et al (2009) Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study. BMC Med Imaging

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awadi Rania .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rania, A., Benameur, N., Kraiem, T., Labidi, S. (2023). Finite Element of Biomechanical Model of the Human Myocardium from a Cardiac MRI Images. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) Proceedings of Seventh International Congress on Information and Communication Technology. Lecture Notes in Networks and Systems, vol 464. Springer, Singapore. https://doi.org/10.1007/978-981-19-2394-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2394-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2393-7

  • Online ISBN: 978-981-19-2394-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation