Microfluidic Retina-on-Chip

  • Chapter
  • First Online:
Microfluidics and Multi Organs on Chip

Abstract

Retina, being a visceral layer of eye, has attracted the attention of researchers all over the world. Due to its complex cellular architecture and coordination, in vitro replication of retinal functions has been a daunting task. Ex-vivo/in vivo animal retinal models are limited by their ethical concerns, cost, reproducibility, and prolonged experimental duration. Over the years, microfluidic perfusion devices have captured significant interest as in vitro models for investigating cellular functions, in a controlled system. Mimicking of retinal architecture and cellular functions via in vitro retina-on-chip (RoC) model has opened newer avenues for understanding retinal-complexity, retinal diseases, and also for high-throughput evaluation of retinal drugs. Development of retinal organoids within RoCs has thus offered potential of reducing the burden on animal investigations, while enabling numerous experimental runs within a relatively short period of time. This chapter emphasizes on the technological advancements in the area of RoC, the fabrication methods employed in device construction, and its application to mimic in vivo retinal milieu for pre-clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cora V, Haderspeck J, Antkowiak L, Mattheus U, Neckel PH, Mack AF, Bolz S, Ueffing M, Pashkovskaia N, Achberger K, Liebau S (2019) A cleared view on retinal organoids. Cells 8(5):391. https://doi.org/10.3390/cells8050391

    Article  CAS  PubMed Central  Google Scholar 

  2. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472(7341):51–56. https://doi.org/10.1038/nature09941

    Article  CAS  PubMed  Google Scholar 

  3. Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao L-H, Peters A, Park TS, Zambidis ET, Meyer JS et al (2014) Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 5:4047. [CrossRef]-retina

    Article  CAS  PubMed  Google Scholar 

  4. Shafaie S, Hutter V, Cook MT, Brown MB, Chau DYS (2016) In vitro cell models for ophthalmic drug development applications. Biores Open Access 5(1):94–108. https://doi.org/10.1089/biores.2016.0008. Published online 2016 Apr 1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ubels JL, Clousing DP (2005) In vitro alternatives to the use of animals in ocular toxicology testing. Ocul Surf 3(3):126–142. https://doi.org/10.1016/s1542-0124(12)70195-7

    Article  PubMed  Google Scholar 

  6. Toropainen E (2007) Corneal Epithelial Cell Culture Model for Pharmaceutical Studies. University of Kuopio distributor: Kuopio University Library

    Google Scholar 

  7. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell [Internet]. [cited 2021 Aug 31];10(6):771–85. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1934590912002421

  8. Soo JY, Jansen J, Masereeuw R, Little MH (2018) Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol 14(6):378–393. https://doi.org/10.1038/s41581-018-0003-9. PMID: 29626199; PMCID: PMC6013592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Achberger K, Haderspeck JC, Kleger A, Liebau S (2019) Stem cell-based retina models. Adv Drug Deliv Rev 140:33–50

    Article  CAS  PubMed  Google Scholar 

  10. Wikswo JP (2014) The relevance and potential roles of microphysiological systems in biology and medicine. Exp Biol Med 239(9):1061–1072

    Article  CAS  Google Scholar 

  11. Peiffer RL Jr, Pohm-Thorsen L, Corcoran K (1994) Models in ophthalmology and vision research. In: The biology of the laboratory rabbit, pp 409–433. https://doi.org/10.1016/B978-0-12-469235-0.50025-7. Epub 2013 Oct 21

    Chapter  Google Scholar 

  12. Volland S, Esteve-Rudd J, Hoo J, Yee C, Williams DS (2015) A comparison of some organizational characteristics of the mouse central retina and the human macula. PLoS One 10(4):e0125631. https://doi.org/10.1371/journal.pone.0125631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang B, Korolj A, Lai BF, Radisic M (2018) Advances in organ-on-a-chip engineering. Nat Rev Mater 3(8):257–278

    Article  Google Scholar 

  14. Puleo CM, Ambrose WM, Takezawa T, Elisseeff J, Wang TH (2009) Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture. Lab Chip 9(22):3221–3227

    Article  CAS  PubMed  Google Scholar 

  15. Chen LJ, Ito S, Kai H, Nagamine K, Nagai N, Nishizawa M, Abe T, Kaji H (2017) Microfluidic co-cultures of retinal pigment epithelial cells and vascular endothelial cells to investigate choroidal angiogenesis. Sci Rep 7(1):1–9

    CAS  Google Scholar 

  16. Mishra S, Thakur A, Redenti S, Vazquez M (2015) A model microfluidics-based system for the human and mouse retina. Biomed Microdevices 17(6):107

    Article  PubMed  Google Scholar 

  17. Mathur A, Loskill P, Shao K, Huebsch N, Hong S, Marcus SG, Marks N, Mandegar M, Conklin BR, Lee LP, Healy KE (2015) Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5(1):1–7

    Article  CAS  Google Scholar 

  18. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R (2016) Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol 34(2):156–170

    Article  CAS  PubMed  Google Scholar 

  20. Nakao Y, Kimura H, Sakai Y, Fujii T (2011) Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics 5(2):022212

    Article  PubMed Central  CAS  Google Scholar 

  21. Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. https://doi.org/10.1016/j.cell.2016.05.082

    Article  CAS  PubMed  Google Scholar 

  22. Clevers HC (2019) Organoids: avatars for personalized medicine. Keio J Med 68(4):95. https://doi.org/10.2302/kjm.68-006-ABST

    Article  PubMed  Google Scholar 

  23. De Crignis E, Hossain T, Romal S, Carofiglio F, Moulos P, Khalid MM et al (2021) Application of human liver organoids as a patient-derived primary model for HBV infection and related hepatocellular carcinoma. eLife [Internet] 10:e60747. [cited 2021 Aug 30]

    Article  Google Scholar 

  24. Willoughby CE, Ponzin D, Ferrari S, Lobo A, Landau K, Omidi Y (2010) Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function - a review: Anatomy and physiology of the eye. Clin Exp Ophthalmol 38:2–11

    Article  Google Scholar 

  25. Gill JS, Georgiou M, Kalitzeos A, Moore AT, Michaelides M (2019) Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy. Br J Ophthalmol 103(5):711–720

    Article  Google Scholar 

  26. Kalargyrou AA, Pearson RA (2020) Photoreceptor transplantation: re-evaluating the mechanisms that underlie rescue. In: Fritzsch B (ed) The senses: a comprehensive reference, 2nd edn. Elsevier, Oxford, pp 614–629. [Internet] [cited 2021 Oct 4]

    Chapter  Google Scholar 

  27. Susan De Remer. Layers of the Retina. Discovery Eye Foundation [Internet]. [cited 2021 Oct 5]. Available from: https://discoveryeye.org/layers-of-the-retina

  28. Ajioka I, Martins RAP, Bayazitov IT, Donovan S, Johnson DA, Frase S et al (2007) Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell 131:378–390. https://doi.org/10.1016/j.cell.2007.09.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ueno S, Nishiguchi KM, Tanioka H, Enomoto A, Yamanouchi T, Kondo M et al (2013) Degeneration of retinal ON bipolar cells induced by serum including autoantibody against TRPM1 in mouse model of paraneoplastic retinopathy. PLoS One 8(11):e81507

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nagashima K, Kikuchi F, Suzuki Y, Abe T (1981) Retinal amacrine cell involvement in Tay-Sachs disease. Acta Neuropathol 53(4):333–336

    Article  CAS  PubMed  Google Scholar 

  31. External limiting membrane - Membranum limitans externum [Internet]. IMAIOS. Available from: https://www.imaios.com/en/e-Anatomy/Anatomical-Parts/External-limiting-membrane

  32. Macular Hole | National Eye Institute [Internet]. [cited 2021 Oct 18]. Available from: https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/macular-hole

  33. Retinal Tears - Patients - The American Society of Retina Specialists [Internet]. [cited 2021 Oct 5]. Available from: https://www.asrs.org/patients/retinal-diseases/26/retinal-tears

  34. Retinal detachment - Diagnosis and treatment - Mayo Clinic [Internet]. [cited 2021 Oct 18]. Available from: https://www.mayoclinic.org/diseases-conditions/retinal-detachment/diagnosis-treatment/drc-20351348

  35. Blair K, Czyz CN (2021) Retinal Detachment [Internet]. StatPearls [Internet]. StatPearls Publishing. [cited 2021 Oct 4]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551502/

  36. Vujosevic S, Midena E (2013) Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Müller cells alterations. J Diabet Res 2013:e905058

    Article  Google Scholar 

  37. Diagnosis and treatment - Mayo Clinic [Internet]. [cited 2021 Oct 18]. Available from: https://www.mayoclinic.org/diseases-conditions/diabetic-retinopathy/diagnosis-treatment/drc-20371617?p=1

  38. Macular Hole: Symptoms, Treatments [Internet]. Cleveland Clinic. [cited 2021 Oct 4]. Available from: https://my.clevelandclinic.org/health/diseases/14208-macular-hole

  39. Achberger K, Probst C, Haderspeck J, Bolz S, Rogal J, Chuchuy J et al (2019) Human Retina-on-a-Chip: merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. elife 8:e46188

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fligor CM, Langer KB, Sridhar A, Ren Y, Shields PK, Edler MC et al (2018) Three-dimensional retinal organoids facilitate the investigation of retinal ganglion cell development, organization and neurite outgrowth from human pluripotent stem cells. Sci Rep 8(1):14520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Koens R, Tabata Y, Serrano JC, Aratake S, Yoshino D, Kamm RD et al (2020) Microfluidic platform for three-dimensional cell culture under spatiotemporal heterogeneity of oxygen tension. APL Bioeng 4(1):016106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dodson KH, Echevarria FD, Li D, Sap**ton RM, Edd JF (2015) Retina-on-a-chip: a microfluidic platform for point access signaling studies. Biomed Microdevices 17(6):114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Retina-on-a-chip provides powerful tool for studying eye disease - Science Daily [Internet]. [cited 2021 Oct 5]. Available from: https://www.sciencedaily.com/releases/2019/08/190827095104.htm

  44. Chung M, Lee S, Lee BJ, Son K, Jeon NL, Kim JH (2018) Wet-AMD on a chip: modeling outer blood-retinal barrier in vitro. Adv Healthc Mater 7(2):1700028

    Article  CAS  Google Scholar 

  45. Peter Loskill Lab | Retina on Chip [Internet]. [cited 2021 Oct 5]. Available from: http://loskill-lab.com/retinachip.html

  46. Pattanayak P, Singh SK, Gulati M, Vishwas S, Kapoor B, Chellappan DK et al (2021) Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluid Nanofluid 25(12):99

    Article  PubMed  Google Scholar 

  47. Su P-J, Liu Z, Zhang K, Han X, Saito Y, **a X et al (2015) Retinal synaptic regeneration via microfluidic guiding channels. Sci Rep 5(1):13591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen L-J, Ito S, Kai H, Nagamine K, Nagai N, Nishizawa M et al (2017) Microfluidic co-cultures of retinal pigment epithelial cells and vascular endothelial cells to investigate choroidal angiogenesis. Sci Rep 7(1):3538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Arık YB, Buijsman W, Loessberg-Zahl J, Cuartas-Vélez C, Veenstra C, Logtenberg S et al (2021) Microfluidic organ-on-a-chip model of the outer blood–retinal barrier with clinically relevant read-outs for tissue permeability and vascular structure. Lab Chip 21(2):272–283

    Article  PubMed  Google Scholar 

  50. Chung BG, Choo J (2010) Microfluidic gradient platforms for controlling cellular behavior. Electrophoresis 31(18):3014–3027

    Article  CAS  PubMed  Google Scholar 

  51. Fiorini GS, Chiu DT (2005) Disposable microfluidic devices: fabrication, function, and application. BioTechniques 38(3):429–446

    Article  CAS  PubMed  Google Scholar 

  52. Yeste J, García-Ramírez M, Illa X, Guimerà A, Hernández C, Simó R et al (2017) A compartmentalized microfluidic chip with crisscross microgrooves and electrophysiological electrodes for modeling the blood–retinal barrier. Lab Chip 18(1):95–105

    Article  PubMed  Google Scholar 

  53. Soft lithography for micro- and nanoscale patterning | Nature Protocols [Internet]. [cited 2021 Oct 28]. Available from:https://www.nature.com/articles/nprot.2009.234?WT.feed_name=subjects_soft-lithography

  54. Prabhakar P, Sen RK, Dwivedi N, Khan R, Solanki PR, Srivastava AK et al (2021) 3D-printed microfluidics and potential biomedical applications. Front Nanotechnol 3:6

    Article  Google Scholar 

  55. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621

    Article  CAS  Google Scholar 

  56. Xue Y, Seiler MJ, Tang WC, Wang JY, Delgado J, McLelland BT et al (2021) Retinal organoids on-a-chip: a micro-millifluidic bioreactor for long-term organoid maintenance. Lab Chip 21(17):3361–3377

    Article  CAS  PubMed  Google Scholar 

  57. Chuchuy J, Rogal J, Ngo T, Stadelmann K, Antkowiak L, Achberger K et al (2021) Integration of electrospun membranes into low-absorption thermoplastic organ-on-chip. ACS Biomater Sci Eng 7(7):3006–3017

    Article  CAS  PubMed  Google Scholar 

  58. Moraes C, Mehta G, Lesher-Perez SC, Takayama S (2012) Organs-on-a-Chip: a focus on compartmentalized microdevices. Ann Biomed Eng 40:1211–1227

    Article  PubMed  Google Scholar 

  59. Van der Meer AD, Van den Berg A (2012) Organs-on-chips: breaking the in vitro impasse. Integr Biol (Camb) 4:461–576. https://doi.org/10.1039/c2ib00176d

    Article  CAS  Google Scholar 

  60. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754. https://doi.org/10.1016/j.tcb.2011.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Polini A, Prodanov L, Bhise NS, Manoharan V, Dokmeci MR, Khademhosseini A (2014) Organs-on-a-chip: a new tool for drug discovery. Expert Opin Drug Discov 9:335–352. https://doi.org/10.1517/17460441.2014.886562

    Article  CAS  PubMed  Google Scholar 

  62. Singh RK, Nasonkin IO (2020) Limitations and promise of retinal tissue from human pluripotent stem cells for develo** therapies of blindness. Front Cell Neurosci 14:179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Capowski EE, Samimi K, Mayerl SJ, Phillips MJ, Pinilla I, Howden SE, Saha J, Jansen AD, Edwards KL, Jager LD et al (2019) Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development 146:dev171686

    PubMed  PubMed Central  Google Scholar 

  64. Zhang Z, Xu Z, Yuan F, ** K, **ang M (2021) Retinal organoid technology: where are we now? Int J Mol Sci 22:10244. https://doi.org/10.3390/ijms221910244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim L, Toh YC, Voldman J, Yu H (2007) A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 7(6):681–694

    Article  CAS  PubMed  Google Scholar 

  66. Wright CB, Becker SM, Low LA, Tagle DA, Paul A (2020) Sieving. improved ocular tissue models and eye-on-a-chip technologies will facilitate ophthalmic drug development. J Ocul Pharmacol Ther 36(1):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang Z, He X, Qiao H, Chen P (2019) Global trends of organoid and organ-on-a-chip in the past decade: a bibliometric & comparative study. Tissue Eng. https://doi.org/10.1089/ten.TEA.2019.0251

  68. Cai S, He L, Zheng F, Kong F, Dao M, Karniadakis GE, Suresh S (2021) Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proc Natl Acad Sci U S A 118(13):e2100697118. https://doi.org/10.1073/pnas.2100697118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hailstone M, Waithe D, Samuels TJ, Yang L, Costello I, Arava Y, Robertson E, Parton RM, Davis I (2020) CytoCensus, map** cell identity and division in tissues and organs using machine learning. elife 9:e51085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mazerik JN, Becker S, Sieving PA (2018) 3-D retina organoids: building platforms for therapies of the future. Cell Med 10:1–6

    Article  Google Scholar 

  71. Wright CB, Becker SM, Low LA, Tagle DA, Sieving PA (2020) Improved ocular tissue models and eye-on-a-chip technologies will facilitate ophthalmic drug development. J Ocul Pharmacol Ther 36(1):25–29. https://doi.org/10.1089/jop.2018.0139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H, Naidoo K, Pesudovs K, Silvester A, Stevens GA, Tahhan N, Wong TY, Taylor HR (2017) Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health 5(12):e1221–e1234

    Article  PubMed  Google Scholar 

  73. Wong CH, Siah KW, Lo AW (2019) Estimation of clinical trial success rates and related parameters. Biostatistics 20(2):273–286

    Article  PubMed  Google Scholar 

  74. Aasen DM, Vergara MN (2020) New drug discovery paradigms for retinal diseases: a focus on retinal organoids. J Ocul Pharmacol Ther 36(1):18–24. https://doi.org/10.1089/jop.2018.0140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gordois A, Cutler H, Pezzullo L et al (2012) An estimation of the worldwide economic and health burden of visual impairment. Glob Public Health 7(5):465–481. https://doi.org/10.1080/17441692.2011.634815

    Article  PubMed  Google Scholar 

  76. Bleijs M, van de Wetering M, Clevers H, Drost J (2019) Xenograft and organoid model systems in cancer research. EMBO J 38(15):e101654. https://doi.org/10.15252/embj.2019101654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Achberger K, Cipriano M, Düchs M, Schön C, Michelfelder S, Stierstorfer B, Lamla T, Kauschke SG, Chuchuy J, Roosz J, Mesch L, Cora V, Pars S, Pashkovskaia N, Corti S, Kleger A, Kreuz S, Maier U, Liebau S, Loskill P (2021) Human stem cell-based retina-on-chip as new translational model for validation of AAV retinal gene therapy vectors. Stem Cell Rep. https://doi.org/10.1101/2021.03.02.433550

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prajakta Dandekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhyay, U., Kumaran, A., Yadav, S., Majumder, A., Dandekar, P. (2022). Microfluidic Retina-on-Chip. In: Mohanan, P.V. (eds) Microfluidics and Multi Organs on Chip . Springer, Singapore. https://doi.org/10.1007/978-981-19-1379-2_17

Download citation

Publish with us

Policies and ethics

Navigation