Effect of Trace Elements in Soils and Its Management

  • Chapter
  • First Online:
Agrochemicals in Soil and Environment

Abstract

Some trace elements are essential ingredients for plant progress as well as human and animal health, and they occur naturally in soils. At high concentrations, however, all trace elements become potentially hazardous. They are found in modest amounts (less than 1000 mg/kg) in organisms; however, they exert magnificent biological impact, as nutrients and environmental factor. In this chapter, we have discussed the various effects of trace elements in soils and their assessment and management via various methods, e.g. photostabilisation technique. The knowledge of trace element and its limitation will be essential for the management of the soil and environmental contamination. The present compilation of the data gives the information regarding its various techniques, which will be beneficial to maintain the ecosystem of the environment and the soils. The various research papers with the scientific explanation have been covered to get the concrete information to justify the title. Moreover, the chapter provides the limitation of the trace elements, which is directly related to clinical aspects as well as the phytomanagement of soil and its management. Similarly, related studies recently conducted on soluble as well insoluble trace elements and their soil extraction along with their clinical effects are summarised in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamcová D, Vaverková MD, Břoušková E (2016) The toxicity of two types of sewage sludge from wastewater treatment plant for plants. J Ecol Eng 17:2

    Article  Google Scholar 

  • Adamcová D, Radziemska M, Ridošková A et al (2017) Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere 185:1011–1018

    Article  PubMed  Google Scholar 

  • Anjum NA, Adam V, Kizek R et al (2015) Nanoscale copper in the soil–plant system–toxicity and underlying potential mechanisms. Environ Res 138:306–325

    Article  CAS  PubMed  Google Scholar 

  • Benimeli CS, Medina A, Navarro CM et al (2009) Bioaccumulation of copper by Zea mays: impact on root, shoot and leaf growth. Water Air Soil Pollut 55:1–6

    Google Scholar 

  • Bremner JM (1965) Methods of soil analysis. ACSESS, Madison, pp 1256–1286

    Google Scholar 

  • Bus A, Karczmarczyk A, Baryła A (2016) The use of reactive material for limiting P-leaching from green roof substrate. Water Sci Technol 73:3027–3032

    Article  CAS  PubMed  Google Scholar 

  • Christou A, Theologides CP, Costa C et al (2017) Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site. Cyprus J Geochem Explor 178:16–22

    Article  CAS  Google Scholar 

  • Churchman GJ, Whitton JS, Claridge GGC et al (1984) Intercalation method using formamide for differentiating halloysite from kaolinite. Clay Clay Miner 32:241–248

    Article  CAS  Google Scholar 

  • Cundy AB, Bardos RP, Church A et al (2013) Develo** principles of sustainability and stakeholder engagement for “gentle” remediation approaches: the European context. J Environ Manage 129:283–291

    Article  CAS  PubMed  Google Scholar 

  • Enger H, Riehm H (1958) Die ammoniumlaktatessigsäure-methode zur bestimmung der leichtlöslichen phosphorsäure in karbonathaltigen böden. Agrochimica 3:49–65

    Google Scholar 

  • Friesl W, Lombi E, Horak O et al (2003) Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. J Plant Nutr Soil Sci 166:191–196

    Article  CAS  Google Scholar 

  • Fronczyk J, Radziemska M, Mazur Z (2015) Copper removal from contaminated groundwater using natural and engineered limestone sand in permeable reactive barriers. Fresenius Environ Bull 24:228–234

    Google Scholar 

  • Gil-Loaiza J, White SA, Root RA et al (2016) Phytostabilization of mine tailings using compost-assisted direct planting: translating greenhouse results to the field. Sci Total Environ 565:451–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gołda S, Korzeniowska J (2016) Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium. Environ Prot Nat Resour 27:8–14

    Google Scholar 

  • Gusiatin ZM, Kulikowska D (2016) Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts. Environ Technol 37:2337–2347

    Article  CAS  PubMed  Google Scholar 

  • Haloizyt W (2017) FunkcjonalizacjaiZastosowanie. http://www.supra.amu.edu.pl/files/monographs/e-srodowisko_i_przemysl_t4.pdf. Accessed 23 August 2017

  • Harvey PJ, Handley HK, Taylor MP (2016) Widespread copper and lead contamination of household drinking water, New South Wales. Austr Environ Res 151:275–285

    Article  CAS  Google Scholar 

  • Herojeet R, Rishi MS, Kishore N (2015) Integrated approach of heavy metal pollution indices and complexity quantification using chemometric models in the Sirsa Basin, Nalagarh valley, Himachal Pradesh, India. Chin J Geochem 34:620–633

    Article  CAS  Google Scholar 

  • Jones S, Bardos RP, Kidd PS et al (2016) Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils. J Environ Manag 171:101–112

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  • Kalenik M (2014) Sewage treatment efficacy of sandy soil bed with natural clinoptiolite assist layer. Ochr Sr 36:43–48

    Google Scholar 

  • Kim M, Li LY, Gorgy T et al (2017) Review of contamination of sewage sludge and amended soils by polybrominateddiphenyl ethers based on meta-analysis. Environ Pollut 220:753–765

    Article  CAS  PubMed  Google Scholar 

  • Klute A (1996) Methods of soil analysis. American Society of Agronomy Monograph, Madison, p 9

    Google Scholar 

  • Koda E, Osinski P, Kolanka T (2013) Flow numerical modeling for efficiency assessment of vertical barriers in landfills. In Coupled phenomena in environmental geotechnics: from theoretical and experimental research to practical applications, proceedings of international symposium TC215 ISSMGE, Torino Italy, pp 693–698

    Google Scholar 

  • Labidi S, Firmin S, Verdin A et al (2017) Nature of fly ash amendments differently influences oxidative stress alleviation in four forest tree species and metal trace element phytostabilization in aged contaminated soil: a long-term field experiment. Ecotoxicol Environ Saf 138:190–198

    Article  CAS  PubMed  Google Scholar 

  • Mazur Z, Radziemska M, Maczuga O et al (2013) Heavy metal concentrations in soil and moss (Pleuroziumschreberi) near railroad lines in Olsztyn (Poland). Fresenius Environ Bull 22:955–961

    CAS  Google Scholar 

  • Mazur Z, Radziemska M, Fronczyk J et al (2015) Heavy metal accumulation in bioindicators of pollution in urban areas of north eastern Poland. Fresenius Environ Bull 24:216–213

    Google Scholar 

  • Mills T, Robinson B, Green S et al (2005) Trace element accumulation by poplars and willows used for stock fodder. N Z J Agric Res 48:489–497

    Article  Google Scholar 

  • Minnikova TV, Denisova TV, Mandzhieva SS et al (2017) Assessing the effect of heavy metals from the Novocherkassk power station emissions on the biological activity of soils in the adjacent areas. J Geochem Explor 174:70–78

    Article  CAS  Google Scholar 

  • Mocek A, Drzymała SG (2010) Analysis and soil classification. Poznan University of Life Sciences, Poznan

    Google Scholar 

  • Mustafa G, Komatsu S (2016) Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochim Biophys Acta 1864:932–944

    Article  CAS  PubMed  Google Scholar 

  • Narendrula R, Nkongolo KK, Beckett P (2012) Comparative soil metal analyses in sudbury (Ontario, Canada) and lubumbashi (Katanga, DR-Congo). Bull Environ Contam Toxicol 88:187–192

    Article  CAS  PubMed  Google Scholar 

  • Nirola R, Megharaj M, Palanisami T et al (2015) Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine–a quest for phytostabilization. J Sustain Min 14:115–123

    Article  Google Scholar 

  • Padmavathiamma P, Li L (2009) Phytoremediation of metal-contaminated soil in temperate regions of British Columbia, Canada. Int J Phytoremediation 11:575–590

    Article  CAS  PubMed  Google Scholar 

  • Phytotoxkit FTM (2004) Seed germination and early growth microbiotest with higher plants. Standard operation procedure. Micro-Bio Tests Inc, Nazareth, pp 1–24

    Google Scholar 

  • Prasad MNV, Freitas H (2006) Trace elements in the environment biogeochemistry. Biotechnology and Bioremediation Humana Press, New York, p 301

    Google Scholar 

  • Pueyo M, Lopez-Sanchez JF, Rauret G (2004) Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Anal Chim Acta 504:217–226

    Article  CAS  Google Scholar 

  • Radziemska M, Fronczyk J (2015) Level and contamination assessment of soil along an expressway in an ecologically valuable area in Central Poland. IJERPH 12:13372–13387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radziemska M, Mazurb Z, Jeznacha J (2013) Influence of applying halloysite and zeolite to soil contaminated with nickel on the content of selected elements in Maize (Zea mays L.). Chem Eng Trans 32:301–306

    Google Scholar 

  • Radziemska M, Mazur Z, Fronczyk J et al (2014) Effect of zeolite and halloysite on accumulation of trace elements in maize (Zea Mays L.) in nickel contaminated soil. Fresenius Environ Bull 23:3140–3146

    CAS  Google Scholar 

  • Radziemska M, Jeznach J, Mazur Z et al (2016a) Assessment of the effect of reactive materials on the content of selected elements in Indian mustard grown in Cu-contaminated soils. J Water Land Dev 28:53–60

    Article  CAS  Google Scholar 

  • Radziemska M, Mazur Z, Fronczyk J et al (2016b) Co-remediation of Ni-contaminated soil by halloysite and Indian mustard (Brassica juncea L). Clay Miner 51:489–497

    Article  CAS  Google Scholar 

  • Radziemska M, Gusiatin ZM, Bilgin A (2017) Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecol Eng 102:490–500

    Article  Google Scholar 

  • Sakiewicz P, Nowosielski R, Pilarczyk W et al (2011) Selected properties of the halloysite as a component of Geosynthetic Clay Liners (GCL). JAMME 48:177–191

    Google Scholar 

  • Sakiewicz P, Lutynski M, Soltys J et al (2016) Purification of halloysite by magnetic separation. Physicochem Probl Miner Process 52:991–1001

    CAS  Google Scholar 

  • Sas W, Głuchowski A, Radziemska M et al (2015) Environmental and geotechnical assessment of the steel slags as a material for road structure. Materials 8:4857–4875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharaff M, Kamat S, Archana G (2017) Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils. Ecotoxicol Environ Saf 138:113–121

    Article  CAS  PubMed  Google Scholar 

  • Shutcha MN, Faucon MP, Kissi CK et al (2015) Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo). Ecol Eng 82:81–90

    Article  Google Scholar 

  • Singh UK, Kumar B (2017) Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere 174:183–199

    Article  CAS  PubMed  Google Scholar 

  • Sinnett DE, Lawrence VK, Hutchings TR et al (2011) Plants growing on contaminated and brownfield sites appropriate for use in Organisation for Economic Co-operation and Development terrestrial plant growth test. Environ Toxicol Chem 30:124–131

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Li Y, Xu Y et al (2015) In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appl Clay Sci 105:200–206

    Article  Google Scholar 

  • Szczepanik B, Słomkiewicz P, Garnuszek M et al (2015) The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF and XRD studies. J Mol Struct 1084:16–22

    Article  CAS  Google Scholar 

  • Touceda-González M, Álvarez-López V, Prieto-Fernández Á et al (2017) Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. J Environ Manag 186:301–313

    Article  Google Scholar 

  • Voběrková S, Vaverková MD, Burešová A et al (2017) Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Manag 1:157–164

    Article  Google Scholar 

  • Wong YS, Lam EKH, Tam NFY (1994) Physiological effects of copper treatment and its uptake pattern in Festucarubra cv. Merlin Resour Conserv Recycl 11:311–319

    Article  Google Scholar 

  • Wyszkowski M, Radziemska M (2010) Effects of chromium (III and VI) on spring barley and maize biomass yield and content of nitrogenous compounds. J Toxicol Environ Health A 73:1274–1282

    Article  CAS  PubMed  Google Scholar 

  • Wyszkowski M, Radziemska M (2013) Assessment of tri-and hexavalent chromium phytotoxicity on Oats (Avena sativa L.) biomass and content of nitrogen compounds. Water Air Soil Pollut 244:1619–1632

    Article  Google Scholar 

  • Yin L, Ren A, Wei M et al (2014) Neotyphodiumcoenophialum-infected tall fescue and its potential application in the phytoremediation of saline soils. Int J Phytoremediation 16:235–246

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khatana, K., Nagar, J.K. (2022). Effect of Trace Elements in Soils and Its Management. In: Naeem, M., Bremont, J.F.J., Ansari, A.A., Gill, S.S. (eds) Agrochemicals in Soil and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-9310-6_18

Download citation

Publish with us

Policies and ethics

Navigation