Fungal Biocontrol Agents: An Eco-friendly Option for the Management of Plant Diseases to Attain Sustainable Agriculture in India

  • Chapter
  • First Online:
Fungal diversity, ecology and control management

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Intensive use of agrochemicals has adverse effects on humans and environmental conditions. Increased consumer demands for safe food have triggered research on the development of safe and eco-friendly biopesticides. Fungi-based biocontrol agents help minimize disease(s) pressure, safer food and feeds, with minimum undesirable impact on human health and environmental conditions. The use of antagonistic endophytes and Trichoderma as biocontrol agents is recently drawing particular attention to managing some of the major plant diseases. Trichoderma spp. has been widely used against many plant pathogens. It produces different secondary metabolites and enzymes such as chitinase, proteases, and β-1,3-glucanase and helps induce plant growth defense, systemic resistance and competes against plant pathogens. Fungi, including species of Trichoderma, Gliocladium, Aspergillus, Fusarium, and Paecilomyces species, antagonize plant pathogens, mycoparasitic pathogens, and trigger systemic acquired resistance. Research related to genetic manipulation to enhance virulence-based biocontrol agents is increasing, but it is not as widely explored as in bacteria-based biocontrol agents. The combination of fungi-based biocontrol agents and biofertilizers contributes to sustainable agriculture, not necessarily with some challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adebola MO, Amadi JE (2010) Antagonistic activities of Paecilomyces and Rhizopus species against the cocoa black pod pathogen (Phytophthora palmivora). Afr Sci 11:235–239

    Google Scholar 

  • Ahman J, Johanson T, Olsson M, Punt PJ, Van den Hondel CAMJJ, Tunlid AS (2002) Improving the pathogenicity of a nematode trap** fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 689:3408–3415

    Article  CAS  Google Scholar 

  • Al-Hazmi AS, Dawabah AAM, Al-Nadhari SN, Al-Yahya FA (2017) Comparative efficacy of different approaches to managing Meloidogyne incognita on green bean. Saudi J Biol Sci 24:149–154

    Article  CAS  PubMed  Google Scholar 

  • Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635. https://doi.org/10.1146/annurev.py.30.090192.003131

    Article  CAS  PubMed  Google Scholar 

  • Anis M, Abbasi MW, Zaki MJ (2010) Bioefficacy of microbial antagonists against Macrophomina phaseolina on sunflower. Pak J Bot 42:2935–2940

    Google Scholar 

  • Arora K, Sharma S, Krishna SB, Adam JK, Kumar A (2017) Non-edible oil cakes as a novel substrate for DPA production and augmenting biocontrol activity of Paecilomyces variotii. Front Microbiol 8:753

    Article  PubMed  PubMed Central  Google Scholar 

  • Baby UI, Manibhushanrao K (1996) Fungal antagonists and VA mycorrhizal fungi for biocontrol of Rhizoctonia solani, the rice sheath blight pathogen. In: Manibhushanrao K, Mahadevan A (eds) Recent developments in biocontrol of plant pathogens. Today and Tomorrow’s Printers and Publishers, Allahabad

    Google Scholar 

  • Bainier G (1907) Mycothe ‘que de l’e’cole de Pharmacie. XI Paecilomyces, genre nouveau de Muce’dine’es. Bull Soc Mycol 23:26–27

    Google Scholar 

  • Baker KF, Cook RJ (1974) Biological control of plant pathogens. W. H. Freeman and Co, San Francisco, p 433

    Google Scholar 

  • Balasubramanian C, Udaysoorian P, Prabhu C, Kumar GS (2008) Enriched compost for yield and quality enhancement in sugarcane. J Ecobiol 22:173–176

    Google Scholar 

  • Barnes S, Moore D (1997) The effect of fatty, organic or phenolic acids on the germination of conidia of Metarhizium flavoviride. Mycol Res 10:662–666

    Article  Google Scholar 

  • Bateman R, Carey M, Morre D, Prior C (1993) The enhanced infectivity of Metarhizium flaviviridae in oil formulations to desert locust at low humidities. Ann Appl Biol 122:145–152

    Article  Google Scholar 

  • Batta YA (2005) Postharvest biological control of apple gray mould by Trichoderma harzianum formulated in an invert emulsion. Crop Prot 23(1):19–26

    Article  Google Scholar 

  • Bhagat S, Pan S (2010) Biological management of root and collar rot (Rhizoctonia solani) of French bean (Phaseolus vulgaris). Indian J Agric Sci 80(1):42–50

    Google Scholar 

  • Bhagat D, Koche M, Ingle RW, Mohod YN (2010) Evaluate the suitability of locally available substrates for mass multiplication of cellulolytic fungi and bacteria. J Plant Dis Sci 5:27–29

    Google Scholar 

  • Brand D, Roussos S, Pandey A, Zilioli PC, Pohl J, Soccol CR (2004) Development of a bionematicide with Paecilomyces lilacinus to control Meloidogyne incognita. Appl Biochem Biotechnol 118:81–88

    Article  CAS  PubMed  Google Scholar 

  • Brunner K, Montero M, Mach RL, Peterbauer CK, Kubicek CP (2003) Expression of the ech42 (endochitinase) gene of Trichoderma atroviride under carbon starvation is antagonized via a BrlA-like cis-acting element. FEMS Microbiol Lett 218:259–264

    Article  CAS  PubMed  Google Scholar 

  • Carsolio C, Benhamou N, Haran S, Cortes C, Gutierrez A, Chet I, Herrera-Estrella A (1999) Role of the Trichoderma harzianum endochitinase gene ech42 in mycoparasitism. Appl Environ Microbiol 65:929–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, DegenkoSL T, Samuels GJ (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107(3):558–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CC, Kumar HA, Kumar S, Tzean SS, Yeh KW (2007) Molecular cloning, characterization, and expression of a chitinase from the entomopathogenic fungus Paecilomyces javanicus. Curr Microbiol 55:8–13

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Sun S, Miao C, Wu K, Chen Y, Xu L, Guan H, Zao L (2016) Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism and antagonistic activities of induced volatile organic compounds on root rot pathogenic fungi of Panax notoginseng. J Ginseng Res 40:315–324

    Article  PubMed  Google Scholar 

  • Chet I, Inbar J (1994) Biological control of fungal pathogens. Appl Biochem Biotechnol 48:37–43

    Article  CAS  PubMed  Google Scholar 

  • Chet IJ, Inbar Y, Hadar (1997) Fungal antagonists and mycoparasites. In: Wicklow DT, Soderstrom B (eds) The mycota, environmental and microbial relationships, vol 4. Springer, Berlin, pp 165–184

    Google Scholar 

  • Chet I, Benhamou N, Haran S (1998) Mycoparasitism and lytic enzymes. In: Harman GE, Kubicek CP (eds) Trichoderma and gliocladium, Enzymes, biological control and commercial applications, vol 2. Taylor and Francis, London, pp 153–171

    Google Scholar 

  • Churchill BW (1982) Mass production of microorganisms for biological control

    Google Scholar 

  • Connick W, Daigle D, Quimby P (1991) An improved invert emulsion with high water retention for mycoherbicide delivery. Weed Technol 5:442–444

    Article  CAS  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society Press, St. Paul, p 539

    Google Scholar 

  • Cumagun CJR (2014) Advances in formulation of trichoderma for biocontrol. In: Biotechnology and biology of trichoderma. Elsevier, Amsterdam, pp 527–531

    Chapter  Google Scholar 

  • Cumagun CJR, Lapis DB (1993) Note: practical approach in mass production of Trichoderma spp. as a means of biological control against sheath blight of rice. Philipp Agric 76:251–257

    Google Scholar 

  • Das BC, Hazarika DK (2000) Biological management of sheath blight of rice. Indian Phytopathol 53(4):433–435

    Google Scholar 

  • De La Cruz J, Hidalgo-Gallego A, Lora JM, Benitez T, Pintor-Toro JA, Llobell A (1992) Isolation and characterization of three chitinases from Trichoderma harzianum. Eur J Biochem 206:859–867

    Article  PubMed  Google Scholar 

  • Degenkolb T, Grafenhan T, Berg A, Nirenberg HI, Gams W, Brückner H (2006) Peptaibiomics: screening for polypeptide antibiotic (peptaibiotics) from plant protective Trichoderma species. Chem Biodivers 3:593–610

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Jarana J, Moreno-Mateos MA, Benitez T (2003) Glucose uptake in Trichoderma harzianum: role of gtt l. Eukaryot Cell 2:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Francesco A, Martini C, Mari M (2016) Biological control of postharvest diseases by microbial antagonists: How many mechanisms of action Eur. J Plant Pathol 145:711–717

    Article  CAS  Google Scholar 

  • Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant-Microbe Interact 19:838–853

    Article  CAS  PubMed  Google Scholar 

  • Do Nascimento Silva R, Sousha Rocha JR, Oliveira NT (1998) In vitro antagonistic potential of Trichoderma spp. against Colletotrichum gloeosporioides agent of anthracnose in passion fruit (Passiflora). Boletin-Micologico 13(1):103–110

    Google Scholar 

  • Dong LQ, Yang JK, Zhang KQ (2007) Cloning and phylogenetic analysis of the chitinase gene from the facultative pathogen Paecilomyces lilacinus. J Appl Microbiol 103:2476–2488

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina I, Kubicek CP (2005) Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters. J Zhejiang Univ Sci 6(2):100–112

    Article  Google Scholar 

  • Dubey SC, Bhavani R, Singh B (2011) Integration of soil application and seed treatment formulations of Trichoderma species for management of wet root rot of mungbean caused by Rhizoctonia solani. Pest Manag Sci 67:1163–1168

    Article  CAS  PubMed  Google Scholar 

  • Dunn MT, Sayre RM, Carrell A, Wergin WP (1982) Colonization of nematode eggs by Paecilomyces lilacinus(Thom) Samson as observed with scanning electron microscope. Scan Electron Microsc 3:1351–1357

    Google Scholar 

  • Eapen SJ, Beena B, Ramana K (2005) Tropical soil microflora of spice-based crop** systems as potential antagonists of root-knot nematodes. J Invertebr Pathol 88:218–225

    Article  PubMed  Google Scholar 

  • Eisendle M, Oberegger H, Buttinger R, Illmer P, Haas H (2004) Biosynthesis and uptake of Siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryot Cell 3(2):561–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favre-Bonvin J, Ponchet M, Djian C, Arpin N, Pijarowski L (1991) Acetic acid: A selective nematicidal metabolite from culture filtrates of Paecilomyces lilacinus (Thom) Samson and Trichoderma longibrachiatum Rifai. Nematologica 37:101–112

    Article  Google Scholar 

  • Franken P, Khun G, Gianinazzi-Pearson V (2002) Development and molecular biology of arbuscular mycorrhizal fungi. In: Osiewacz HD (ed) Molecular biology of fungal development. Marcel Dekker, New York, pp 325–348

    Google Scholar 

  • Fravel DR, Rhodes DJ, Larkin RP (1999) Production and commercialization of biocontrol products. In: Albajes R, Lodovica Gullino M, Van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer Academic Publishers, Boston, pp 365–376

    Chapter  Google Scholar 

  • Geremia RA, Goldman GH, Jacobs D, Ardrtes W, Vila SB, Van Montagu M, Herrera-Estrella A (1993) Molecular characterization of the proteinase-encoding gene, prb1 related to mycoparasitism by Trichoderm harzianum. Mol Microbiol 8:603–613

    Article  CAS  PubMed  Google Scholar 

  • Gine A, Sorribas FJ (2017) Effect of plant resistance and BioAct WG (Purpureocillium lilacinum strain 251) on Meloidogyne incognita in a tomato–cucumber rotation in a greenhouse. Pest Manag Sci 73:880–887

    Article  CAS  PubMed  Google Scholar 

  • Gortari MC, Galarza BC, Cazau MC, Hours RA (2008) Comparison of the biological properties of two strains of Paecilomyces lilacinus (Thom) Samson associated to their antagonistic effect onto Toxocara canis eggs. Malays J Microbiol 4:35–41

    Google Scholar 

  • Green S, Wade-Stewart S, Boland G, Teshler M, Liu S (1998) Formulating microorganisms for biological control of weeds. In: Boland G, Kuykendall L (eds) Plant-microbe interactions and biological control. Marcel Dekker, Inc., New York, pp 249–281

    Google Scholar 

  • Haran S, Schickler H, Chet I (1996) Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology 142(9):2321–2331

    Article  CAS  Google Scholar 

  • Harman GE, Bjorkmann T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Enzymes, biological control and commercial applications. Taylor and Francis, London, pp 229–265

    Chapter  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • He A, Jia L, **n-hua W, Quan-guo Z, Wei S, Jie C (2019) Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. J Integr Agric 18(3):599–606

    Article  Google Scholar 

  • Hjeljord L, Tronsmo A (1988) Trichoderma and Gliocladium in biological control: an overview. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Enzymes, biological control and commercial applications. Taylor and Francis, London, pp 129–155

    Google Scholar 

  • Horn WS, Smith JL, Bills GF, Raghoobar SL, Helms GL, Kurtz MB (1992) Sphingofungins E and F: novel serinepalmitoyl transferase inhibitors from Paecilomyces variotii. J Antibiot 45:1692–1696

    Article  CAS  Google Scholar 

  • Howell CR, Puckhaber LS (2005) A study of the characteristics of P and Q strains of Trichoderma virens to account for differences in biological control efficacy against cotton seedling diseases. Biol Control 33:217–222

    Article  Google Scholar 

  • Huang XW, Zhao NH, Zhang KQ (2004) Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Res Microbiol 115:811–816

    Article  CAS  Google Scholar 

  • Ibrahim L, Butt T, Beckett A, Clark S (1999) The germination of oil formulated conidia of the insect pathogen Metarhizium anisolpliae. Mycol Res 103:901–907

    Article  Google Scholar 

  • Jacobs H, Gray SN, Crump DH (2003) Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes. Mycol Res 107:47–56

    Article  PubMed  Google Scholar 

  • Jagana M, Zacharia S, Basayya A (2013) Management of Alternaria blight in Mustard. Ann Plant Prot Sci 21(2):441–442

    Google Scholar 

  • Jat JG, Agalave HR (2013) Antagonistic properties of Trichoderma species against oilseed-borne fungi. Sci Res Reporter 3(2):171–174

    Google Scholar 

  • Jatala P, Kaltenback R, Bocangel M, Devaus AJ, Campos R (1980) Field application of Paecilomyces lilacinus for controlling Meloidogyne incognita on potatoes. J Nematol 12:226–227

    Google Scholar 

  • Jeyarajan R (2006) Prospects of indigenous mass production and formulation of Trichroderma. In: Rabindra RJ, Ramanujam B (eds) Current status of biological control of plant diseases using antagonistic organisms in India. Project Directorate of Biological Control, Bangalore, pp 74–80

    Google Scholar 

  • Jeyarajan R, Nakkeeran S (2000) Exploitation of microorganisms and viruses as biocontrol agents for crop disease management. In: Biocontrol potential and their exploitation in sustainable agriculture. Kluwer Academic/Plenum Publishers, Boston, pp 95–116

    Chapter  Google Scholar 

  • Jeyarajan R, Ramakrishnan G, Dinakaran D, Sridar R (1994) Development of products of Trichoderma viride and Bacillus subtilis for biocontrol of root rot diseases. In: Dwivedi BK (ed) Biotechnology in India. Bioved Research Society, Allahabad, pp 25–36

    Google Scholar 

  • ** X, Hayes KC, Harman GE (1992) Principles in the development of biological control systems employing Trichoderma species against soil-borne plant pathogenic fungi. In: Lantham GF (ed) Frontiers in industrial mycology. Chapman & Hall Inc., New York, pp 174–195

    Chapter  Google Scholar 

  • Jyoti, Singh DP (2016) Fungi as biocontrol agents in sustainable agriculture. In: Microbes and environmental management. Springer, New York, pp 172–192

    Google Scholar 

  • Kamala T, Indira Devi S, Sharma KC, Kennedy K (2015) Phylogeny and taxonomical investigation of Trichoderma spp. from Indian region of Indo-Burma biodiversity hot spot region with special reference to Manipur. Bio Med Res Int 2015:285261

    Google Scholar 

  • Khan A, Williams KL, Nevalainen HK (2004) Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol Control 31:346–352

    Article  CAS  Google Scholar 

  • Khan A, Williams KL, Nevalainen HK (2006) Infection of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum. Biol Control 51:659–678

    Google Scholar 

  • Khan AA, Sinha AP (2005) Influence of different factors on the effectivity of fungal bioagents to manage rice sheath blight in nursery. Indian Phytopathol 58(3):289–293

    Google Scholar 

  • Khan AA, Sinha AP (2007) Screening of Trichoderma spp. against Rhizoctonia solani the causal agent of rice sheath blight. Indian Phytopathol 60(4):450–456

    Google Scholar 

  • Kopchinskiy A, Komon M, Kubicek CP, Druzhinina IS (2005) TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications. Mycol Res 109:658–660

    Article  PubMed  Google Scholar 

  • Kulkarni S, Shalini DS (2007) Trichoderma–a potential biofungicide of the millennium, technical bulletin – 5. University of Agricultural Sciences, Dharwad

    Google Scholar 

  • Kumar S, Thakur M, Rani A (2014) Trichoderma: mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. Afr J Agric Res 9(53):3838–3852

    Google Scholar 

  • Kumar S (2013) Trichoderma: a biological weapon for managing plant diseases and promoting sustainability. Int J Agric Sci Med Vet 1:106–121

    Google Scholar 

  • Kumar S (2010) Integrated management of maydis leaf blight of maize. Ann Plant Prot Sci 18(2):536–537

    Google Scholar 

  • Kumar S, Upadhyay JP, Rani A (2009) Evaluation of Trichoderma species against Fusarium udum Butler causing wilt of Pigeon pea. J Biol Control 23(3):329–332

    Google Scholar 

  • Kumar S, Upadhyay JP, Kumar S (2002) Biocontrol of Alternaria leaf spot of Vicia faba using antagonistic fungi. J Biol Control 20(2):247–251

    Google Scholar 

  • Larran S, Simon MR, Moreno MV, Siurana MS, Perello A (2016) Endophytes from wheat as biocontrol agents against tan spot disease. Biol Control 92:17–23

    Article  Google Scholar 

  • Latorre BA, Lillo C, Rioja ME (2001) Eficacia de los tratamientos fungicidas para el control de Botrytis cinerea de la vid en function de la epoca de aplicacion. Cien Invest Agraria 8:61–66

    Article  Google Scholar 

  • Latz MA, Jensen B, Collinge DB, Jorgensen HJ (2018) Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecol Div 11:555–567

    Article  Google Scholar 

  • Lewis JA (1991) Formulation and delivery system of biocontrol agents with emphasis on fungi Beltsville symposia. Agric Res 14:279–287

    Google Scholar 

  • Li XQ, Xu K, Liu XM, Zhang PA (2020) Systematic review on secondary metabolites of Paecilomyces species: chemical diversity and biological activity. Planta Med 86:805–821

    Article  CAS  PubMed  Google Scholar 

  • Lima-Rivera DL, Lopez-Lima D, Desgarennes D, Velazquez-Rodriguez AS, Carrion G (2016) Phosphate solubilisation by fungi with nematicidal potential. J Soil Sci Plant Nutr 16:507–524

    CAS  Google Scholar 

  • Lorito M, Mach RL, Sposato P, Strauss J, Peterbauer CK, Kubicek CP (1996) Mycoparasitic interaction relieves binding of the Cre1 carbon catabolite repressor protein to promoter sequences of the ech42 (endochitinase-encoding) gene in Trichoderma harzianum. Proc Natl Acad Sci U S A 93:14868–14872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Rozen DE, Kamilova F (2017) Wars between microbes on roots and fruits. F1000 Res 6:343

    Article  CAS  Google Scholar 

  • Lugtenberg BJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92:194

    Article  CAS  Google Scholar 

  • Mach RL, Peterbauer CK, Payer K, Jaksits S, Woo SL, Zeilinger S, Kullnig CM, Lorito M, Kubicek CP (1999) Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Am Soc Microbiol Appl Envirol Microbiol 65(5):1858–1863

    Article  CAS  Google Scholar 

  • Mach RL, Zeilinger S (2003) Regulation of gene expression in industrial fungi: Trichoderma. Appl Microbiol Biotechnol 60:515–522

    Article  CAS  PubMed  Google Scholar 

  • Manibhusanrao K, Sreenivasaprasad S, Baby UF, Joe Y (1989) Susceptibility of rice sheath pathogen to mycoparasites. Curr Sci 58(9):515–518

    Google Scholar 

  • Mathre DE, Cook RJ, Callan NW (1999) From discovery to use: traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis 83:972–983

    Article  CAS  PubMed  Google Scholar 

  • Mcintyre M, Nielsen J, Arnau J, Vander Brink H, Hansen K, Madrid S (2004) Proceedings of the 7th European conference on fungal genetics, Copenhagen, Denmark

    Google Scholar 

  • Mishra DS, Singh US, Dwivedi TS (2001) Comparative efficacy of normal seed treatment and seed bio priming with commercial formulations of Trichoderma sp. In: 53rd Annual meeting of Indian Phytopathological Society and National symposium on Eco-friendly approaches for plant disease management, Chennai, India, pp 21–23

    Google Scholar 

  • Moreno-Gavíra A, Dianez F, Sanchez-Montesinos B, Santos M (2020) Paecilomyces variotii as a plant-growth promoter in horticulture. Agronomy 10:597

    Article  CAS  Google Scholar 

  • Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of microorganisms by drying: a review. J Microbiol Methods 66:183–193

    Article  CAS  PubMed  Google Scholar 

  • Morgan-Jones G, White JF, Rodriguez-Kabana R (1984) Phyto-nematode pathology: ultrastructural studies II. Parasitism of Meloidogyne arenaria eggs and larvae by Paecilomyces lilacinus. Nematropica 14:57–71

    Google Scholar 

  • Morton O, Hirsch P, Kerry B (2004) Infection of plant-parasitic nematodes by nematophagous fungi–a review of the application of molecular biology to understand infection processes and to improve biological control. Nematology 6:161–170

    Article  CAS  Google Scholar 

  • Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Latha J, Hadar R, Horwitz A (2004) Role of two G-protein alpha subunits, TgaA and TgaB in the antagonism of Trichoderma virens against plant pathogens. Appl Environ Microbiol 70:542–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Mukhopadhyay AN (1995) In situ mycoparasitism of Gliocladium virens on Rhizoctonia solani. Indian Phytopathol 48(1):101–102

    Google Scholar 

  • Mukhopadhyay AN, Mukherjee PK (1996) Fungi as fungicides. Int J Trop Plant Dis 14:1–17

    Google Scholar 

  • Mukhopadhyay AN, Shrestha SM, Mukherjee PK (1992) Biological seed treatment for control of soil borne plant pathogens FAO. Plant Prot Bull 40:21–30

    Google Scholar 

  • Mustafa A, Khan MA, Inam-ul-Haq M, Khan SH, Pervez MA (2009) Mass multiplication of Trichoderma spp. on organic substrate and their effect in management of seed borne fungi. Pak J Phytopathol 21(2):108–114

    Google Scholar 

  • Nagaraju A, Sudisha J, Murthy SM, Ito S (2012) Seed priming with Trichoderma harzianum isolates enhances plant growth and induces resistance against Plasmopara halstedii, an incitant of sunflower downy mildew disease. Australas Plant Pathol 41:609–620

    Article  Google Scholar 

  • Nelson EB, Harman GE, Nash GT (1988) Enhancement of Trichoderma induced biological control of Pythium seed rot and pre emergence dam**-off of peas. Soil Biol Biochem 20:145–150

    Article  CAS  Google Scholar 

  • Nesha R, Siddiqui ZA (2017) Effects of Paecilomyces lilacinus and Aspergillus niger alone and in combination on the growth, chlorophyll contents and soft rot disease complex of carrot. Sci Hortic 218:258–264

    Article  Google Scholar 

  • Obrien PA (2017) Biological control of plant diseases. Australas Plant Pathol 46:293–304

    Article  Google Scholar 

  • Olson HA, Benson DM (2007) Induced systemic resistance and the role of binucleate Rhizoctonia and Trichoderma hamatum 382 in biocontrol of Botrytis blight in geranium. Biol Control 42:233–241

    Article  Google Scholar 

  • Pandya JR (2012) Isolation, mass multiplication and characterization of Trichoderma spp. under south Gujarat conditions. Ph.D. thesis submitted to N.A.U., Navsari, pp 35–120

    Google Scholar 

  • Papavizas GC, Dunn MT, Lewis JA, Beagle-Ristaino J (1984) Liquid fermentation technology for experimental production of biocontrol fungi. Phytopathology 74:1171–1175

    Article  CAS  Google Scholar 

  • Parab PB, Diwakar MP, Sawant UK, Kadam JJ (2008) Studies on mass multiplication, different methods of application of bioagent Trichoderma harzianum and their survival in rhizosphere and soil. J Plant Dis Sci 3:215–218

    Google Scholar 

  • Park JO, Hargreaves JR, McConville EJ, Stirling GR, Ghisalberti EL, Sivasithamparam K (2004) Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Lett Appl Microbiol 38:271–276

    Article  CAS  PubMed  Google Scholar 

  • Pau CG, Leong S, Teck C, Wong SK, Eng L, Jiwan M (2012) Isolation of indigenous strains of Paecilomyces lilacinus with antagonistic activity against Meloidogyne incognita. Int J Agric Biol 14:197–203

    CAS  Google Scholar 

  • Persoon CH (1794) Disposita methodica fungorum. Romer’s Neues Mag Bot 1:81–128

    Google Scholar 

  • Perveen Z, Shahzad SA (2013) Comparative study of the efficacy of Paecilomyces species against root-knot nematode Meloidogyne incognita. Pak J Nematol 31:125–131

    Google Scholar 

  • Prasad RD, Rangeshwaran R, Anuroop CP, Phanikumar PR (2002) Bioefficacy and shelf life of conidial and chlamydospore formulations of Trichoderma harzianum Rifai. J Biol Cont 16:145–148

    Google Scholar 

  • Ragab MMM, Abada KA, Abd-El-Moneim ML, Abo-Shosha YZ (2015) Effect of different mixtures of some bioagents and Rhizobium phaseoli on bean dam**-off under field condition. Int J Sci Eng Res 6(7):1009–1106

    Google Scholar 

  • Reddy K, Krishnamma, Narayana P (2009) Efficacy of Trichoderma viride against Colletotrichum falcatum in Sugarcane. Indian J Plant Prot 37:111–115

    Google Scholar 

  • Reithner B, Brunner K, Schumacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renshaw JC, Robson GD, Trinci AP, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142

    Article  CAS  Google Scholar 

  • Roumpos C (2005) Ecological studies on Paecilomyces lilacinus strain 251 and their importance for biocontrol of plant-parasitic nematodes and environmental risk assessment. Cuvillier Verlag, Gottingen

    Google Scholar 

  • Sabalpara AN (2014) Mass multiplication of biopesticides at farm level. J Mycol Plant Pathol 44(1):1–5

    Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BQ, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999

    Article  CAS  Google Scholar 

  • Samson RA (1974) Paecilomyces and some allied hyphomycetes. Stud Mycol 6:1–119

    Google Scholar 

  • Sawant IS, Sawant SD (1996) A simple method for achieving high cfu of Trichoderma harzianum on organic wastes for field applications. Indian Phytopathol 9:185–187

    Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehrawat A, Sindhu SS (2019) Potential of biocontrol agents in plant disease control for improving food safety def. Lifesci J 4:220–225

    Google Scholar 

  • Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006) Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273:4346–4359

    Article  CAS  PubMed  Google Scholar 

  • Sexton AC, Howlett BJ (2006) Parallels in fungal pathogenesis on plant and animal hosts. Eukaryot Cell 5:1941–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafique HA, Sultana V, Ara J, Ehteshamul-Haque S, Athar M (2015) Role of antagonistic microorganisms and organic amendment in stimulating the defense system of okra against root rotting fungi. Pol J Microbiol 64(2):157–162

    Article  PubMed  Google Scholar 

  • Sharma P, Patel AN, Saini MK, Deep S (2012) Field demonstration of Trichoderma harzianum as a plant growth promoter in wheat (Triticum aestivum L). J Agric Sci 4(8):65–73

    Google Scholar 

  • Sharma KK, Singh US, Sharma P, Kumar A, Sharma L (2015) Seed treatments for sustainable agriculture-A review. J Appl Nat Sci 7(1):521–539

    Article  Google Scholar 

  • Shoresh M, Gal-On A, Leibman D, Chet I (2006) Characterization of a mitogen-activated protein kinase gene from cucumber required for Trichoderma conferred plant resistance. Plant Physiol 142:1169–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui ZA, Akhtar MS (2009) Effects of antagonistic fungi and plant growth promoting rhizobacteria on growth of tomato and reproduction of the root-knot nematode, Meloidogyne incognita. Australas Plant Pathol 38:22–28

    Article  Google Scholar 

  • Siddiqui ZA, Futai K (2009) Biocontrol of Meloidogyne incognita on tomato using antagonistic fungi, plant growth promoting rhizobacteria and cattle manure. Pest Manag Sci 65:943–948

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Kapur SP, Singh K (2000) Management of citrus scab caused by Elsinoe fawcettii. Indian Phytopathol 53(4):461–467

    Google Scholar 

  • Singh D, Maheshwari VK (2001) Biological seed treatment for the control of loose smut of wheat. Indian Phytopathol 54(4):457–460

    Google Scholar 

  • Singh US, Zaidi NW (2002) Current status of formulation and delivery of fungal and bacterial antagonists for disease management in India. In: Rabindra RJ, Hussaini SS, Ramanujam B (eds) Microbial biopesticide formulations and application. Project Directorate of Biological Control, Bangalore, pp 168–179

    Google Scholar 

  • Sornakili A, Thankappan S, Sridharan AP, Nithya P, Uthandi S (2020) Antagonistic fungal endophytes and their metabolite-mediated interactions against phytopathogens in rice. Physiol Mol Plant Pathol 112:101525

    Article  CAS  Google Scholar 

  • Srinivasan U, Highley TL, Bruce A (1995) The role of siderophore production in the biological control of wood decay fungi by Trichoderma spp. In: Biodeterioration-and-biodegradation proceedings of the 9th international biodeterioration and bio degradation symposium, Leeds, UK 5–10 September 1993, pp 226–231

    Google Scholar 

  • Sriram S, Raguchander T, Babu S, Nandakumar R, Shanmugam V, Vidhysekaran P, Balasubramanian P, Samiyappan R (2000) Inactivation of phytotoxin produced by the rice sheath blight pathogen Rhizoctonia solani. Can J Microbiol 46:520–524

    Article  CAS  PubMed  Google Scholar 

  • Srivastava SRK, Kumar RKN, Singh S (2010) Management of Macrophomina disease complex in Jute (Corchorus olitorius) by Trichoderma viride. J Biol Control 24(1):77–79

    Google Scholar 

  • Suarez-Estrella F, Arcos-Nievas MA, López MJ, Vargas-García MC, Moreno J (2013) Biological control of plant pathogens by microorganisms isolated from agro-industrial composts. Biol Control 67:509–515

    Article  Google Scholar 

  • Taylor AG, Min T, Harman GE, ** X (1991) Liquid coating formulation for the application of biological seed treatments of Trichoderma harzianum. Biol Control 1:16–22

    Article  Google Scholar 

  • Tiwari AK (1996) Biological control of chickpea wilt complex using different formulations of Gliocladium virens through seed treatment. Ph.D. Thesis, GB Pant University of Agriculture and Technology, Pantnagar India, p 167

    Google Scholar 

  • Tjamos EC, Papavizas GC, Cook RJ (1992) Biological control of plant diseases: progress and challenges for the future. Plenum Press, New York, pp 255–265

    Book  Google Scholar 

  • Tseng SC, Liu SY, Yang HH, Lo CT, Peng KC (2008) Proteomic study of biocontrol mechanisms of Trichoderma harzianum EST 323 in response to Rhizoctonia solani. J Agric Food Chem 56:6914–6922

    Article  CAS  PubMed  Google Scholar 

  • Tulasne L, Tulasne R (1860) De quelques spheries fungicoles, apropos d’un memoire de M. Antoine de Bary sur les Nyctalis. Ann Sci Nat Bot 13:5–19

    Google Scholar 

  • Vala AK, Vaidya SY, Dube HC (2000) Siderophore production by facultative marine fungi. Indian J Mar Sci 29:339–340

    Google Scholar 

  • Varma PK, Gandhi SK, Surender S (2008) Biological control of Alternaria solani the causal agent of early blight of tomato. J Biol Control 22:67–72

    Google Scholar 

  • Vasudevan P, Kavitha S, Priyadarisini VB, Babujee L, Gnanamanickamm SS (2002) Biological control of rice diseases. In: Gnanamanickam SS (ed) Biological control of crop diseases. Marcel Decker, New York, pp 11–32

    Google Scholar 

  • Viterbo A, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum is involved in plant root colonization. Mol Plant Pathol 7:249–258

    Article  CAS  PubMed  Google Scholar 

  • Walters SA, Barker KR (1994) Efficacy of Paecilomyces lilacinus in suppressing Rotylenchulus reniformis on tomato. J Nematol 26:600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Liu F, Pan C (2010) Enhancing the virulence of Paecilomyces lilacinus against Meloidogyne incognita eggs by overexpression of a serine protease. Biotechnol Lett 32:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Weindling R (1934) Studies on lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology 24:1153–1179

    Google Scholar 

  • Whipps JM (1997) Developments in the biological control of soilborne plant pathogens. In: Callow JA (ed) Advances in botanical research incorporating advances in plant pathology, vol 26. Springer, New York, pp 1–123

    Google Scholar 

  • Williams K, Khan A, Holland R (1999) Infection of Meloidogyne javanica by Paecilomyces lilacinus. Nematology 1:131–139

    Article  Google Scholar 

  • Woo SL, Donzelli B, Scala F, Mach R, Harman GE, Kubicek CP, Del Sorbo G, Lorito M (1999) Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum. Mol Plant-Microbe Interact 12:419–429

    Article  CAS  Google Scholar 

  • Yadav SK, Dave A, Sarkar A, Singh HB, Sharma BK (2013) Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Int J Agric Biol 6(2):255–259

    Google Scholar 

  • Yan XN, Sikora RA, Zheng JW (2011) Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita. J Zhejiang Univ Sci B 12:219–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang F, Abdelnabby H, **ao Y (2015) A mutant of the nematophagous fungus Paecilomyces lilacinus (Thom) is a novel biocontrol agent for Sclerotinia sclerotiorum. Microb Pathog 89:169–176

    Article  PubMed  Google Scholar 

  • Yang J, Zhao X, Liang L, **a Z, Lei L, Niu X (2011) Overexpression of a cuticle-degrading proteaseVer112 increases the nematicidal activity of Paecilomyces lilacinus. Appl Microbiol Biotechnol 89:1895–1903

    Article  CAS  PubMed  Google Scholar 

  • Yang HH, Yang SL, Peng KC, Lo CT, Liu SY (2009) Induced proteome of Trichoderma harzianum by Botrytis cinerea. Mycol Res 113:924–932

    Article  CAS  PubMed  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yedidia I, Benhamou N, Kapulnik Y, Chet I (2000) Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol Biochem 38:863–873

    Article  CAS  Google Scholar 

  • Yu Z, Zhang Y, Luo W, Wang Y (2015) Root colonization and effect of biocontrol fungus Paecilomyces lilacinus on composition of ammonia-oxidizing bacteria, ammonia-oxidizing archaea and fungal populations of tomato rhizosphere. Biol Fertil Soils 51:343–351

    Article  CAS  Google Scholar 

  • Zaher EA, Abada KA, Zyton MA (2013) Effect of combination between bioagents and solarization on management of crown and stem rot of Egyptian clover. Am J Plant Sci 1(3):43–50

    Google Scholar 

  • Zeilinger S, Reithner B, Scala V, Piessl I, Lorito M, Mach R (2005) Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Appl Environ Microbiol 71:1591–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini N. Huilgol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huilgol, S.N., Nandeesha, K.L., Banu, H. (2022). Fungal Biocontrol Agents: An Eco-friendly Option for the Management of Plant Diseases to Attain Sustainable Agriculture in India. In: Rajpal, V.R., Singh, I., Navi, S.S. (eds) Fungal diversity, ecology and control management. Fungal Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8877-5_22

Download citation

Publish with us

Policies and ethics

Navigation