Metabolic Rewiring and Cultivation Optimization for Photosynthetic Biofuel Production in Cyanobacteria

  • Chapter
  • First Online:
Bio-Clean Energy Technologies: Volume 1

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 509 Accesses

Abstract

The depletion and use of fossil resources together with global environmental concerns related to CO2 emissions require a transition toward carbon-neutral, sustainable bioenergy. Photosynthetic organisms have great potential as cell factories for directly converting CO2 into a broad range of value-added biochemicals, especially biofuels. Cyanobacteria are particularly attractive as platforms for bio-production, due to relatively fast growth rate, genetic tractability, and low nutrient requirements. Synthetic biology and metabolic engineering pave the way to develop cyanobacteria as green chassis for production of various biofuels, including, e.g., hydrogen, ethanol, butanol, and isoprene. However, engineered cyanobacteria show relatively low productivity compared with model heterotrophic microorganisms. Significant advances of biofuel production using cyanobacterial chassis are expected by implementing recently developed system biology tools as well as optimized cultivation systems with newly developed photobioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 235.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abernathy MH, Yu J, Ma F, Liberton M, Ungerer J, Hollinshead WD, Gopalakrishnan S, He L, Maranas CD, Pakrasi HB, Allen DK, Tang YJ (2017) Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis. Biotechnol Biofuels 10:273

    Article  CAS  Google Scholar 

  • Abramson BW, Kachel B, Kramer DM, Ducat DC (2016) Increased photochemical efficiency in cyanobacteria via an engineered sucrose sink. Plant Cell Physiol 57(12):2451–2460

    Article  CAS  Google Scholar 

  • Ahmad A, Pathania R, Srivastava S (2020) Biochemical characteristics and a genome-scale metabolic model of an Indian Euryhaline cyanobacterium with high Polyglucan content. Meta 10(5)

    Google Scholar 

  • Angermayr SA, Gorchs Rovira A, Hellingwerf KJ (2015) Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol 33(6):352–361

    Article  CAS  Google Scholar 

  • Appel J, Hueren V, Boehm M, Gutekunst K (2020) Cyanobacterial in vivo solar hydrogen production using a photosystem I–hydrogenase (PsaD-HoxYH) fusion complex. Nat Energy 5(6):458–467

    Article  CAS  Google Scholar 

  • Arias DM, Uggetti E, Garcia-Galan MJ, Garcia J (2017) Cultivation and selection of cyanobacteria in a closed photobioreactor used for secondary effluent and digestate treatment. Sci Total Environ 587-588:157–167

    Article  CAS  Google Scholar 

  • Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27(12):1177–1180

    Article  CAS  Google Scholar 

  • Avilan L, Roumezi B, Risoul V, Bernard CS, Kpebe A, Belhadjhassine M, Rousset M, Brugna M, Latifi A (2018) Phototrophic hydrogen production from a clostridial [FeFe] hydrogenase expressed in the heterocysts of the cyanobacterium Nostoc PCC 7120. Appl Microbiol Biotechnol 102(13):5775–5783

    Article  CAS  Google Scholar 

  • Babele PK, Young JD (2020) Applications of stable isotope-based metabolomics and fluxomics toward synthetic biology of cyanobacteria. Wiley Interdiscip Rev Syst Biol Med 12(3):e1472

    Article  Google Scholar 

  • Benner SA (2003) Synthetic biology: act natural. Nature 421(6919):118–118

    Article  CAS  Google Scholar 

  • Bentley FK, Zurbriggen A, Melis A (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 7(1):71–86

    Article  CAS  Google Scholar 

  • Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 4:246

    Article  Google Scholar 

  • Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15):7429–7437

    Article  CAS  Google Scholar 

  • Bolatkhan K, Kossalbayev BD, Zayadan BK, Tomo T, Veziroglu TN, Allakhverdiev SI (2019) Hydrogen production from phototrophic microorganisms: reality and perspectives. Int J Hydrog Energy 44(12):5799–5811

    Article  CAS  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52

    Article  CAS  Google Scholar 

  • Branco Dos Santos F, Du W, Hellingwerf KJ (2014) Synechocystis: not just a plug-bug for CO2, but a Green E. coli. Front Bioeng. Biotechnol 2:36

    Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285(5430):1033–1036

    Article  CAS  Google Scholar 

  • Broddrick JT, Rubin BE, Welkie DG, Du N, Mih N, Diamond S, Lee JJ, Golden SS, Palsson BO (2016) Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis. Proc Natl Acad Sci U S A 113(51):E8344–E8353

    Article  CAS  Google Scholar 

  • Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657

    Article  CAS  Google Scholar 

  • Castenholz RW (2015) General characteristics of the cyanobacteria. In: Bergey’s Manual of systematics of archaea and bacteria. Springer, New York, pp 1–23

    Google Scholar 

  • Castro CC, Nobre C, De Weireld G, Hantson AL (2019) Microbial co-culturing strategies for fructo-oligosaccharide production. New Biotechnol 51:1–7

    Article  CAS  Google Scholar 

  • Cheah YE, Xu Y, Sacco SA, Babele PK, Zheng AO, Johnson CH, Young JD (2020) Systematic identification and elimination of flux bottlenecks in the aldehyde production pathway of Synechococcus elongatus PCC 7942. Metab Eng 60:56–65

    Article  CAS  Google Scholar 

  • Chowdhary P, Raj A (eds) (2020) Contaminants and clean technologies. CRC Press, Boca Raton, FL

    Google Scholar 

  • Chowdhary P, Raj A, Verma D, Yusuf A (2020) Microorganisms for sustainable environment and health. Elsevier, Amsterdam

    Google Scholar 

  • Cogne G, Gros JB, Dussap CG (2003) Identification of a metabolic network structure representative of Arthrospira (spirulina) platensis metabolism. Biotechnol Bioeng 84(6):667–676

    Article  CAS  Google Scholar 

  • Cuaresma M, Janssen M, Vilchez C, Wijffels RH (2011) Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresour Technol 102(8):5129–5137

    Article  CAS  Google Scholar 

  • Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and Bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2:21

    Article  Google Scholar 

  • Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65(2):523–528

    Article  CAS  Google Scholar 

  • Dong P, Maddali MV, Srimani JK, Thelot F, Nevins JR, Mathey-Prevot B, You L (2014) Division of labour between Myc and G1 cyclins in cell cycle commitment and pace control. Nat Commun 5:4750

    Article  CAS  Google Scholar 

  • Ducat DC, Avelar-Rivas JA, Way JC, Silver PA (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol 78(8):2660–2668

    Article  CAS  Google Scholar 

  • Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29(2):95–103

    Article  CAS  Google Scholar 

  • Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Factories 4(1):36

    Article  CAS  Google Scholar 

  • Economou CN, Marinakis N, Moustaka-Gouni M, Kehayias G, Aggelis G, Vayenas DV (2015) Lipid production by the filamentous cyanobacterium Limnothrix sp. growing in synthetic wastewater in suspended- and attached-growth photobioreactor systems. Ann Microbiol 65(4):1941–1948

    Article  CAS  Google Scholar 

  • Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97(10):5528–5533

    Article  CAS  Google Scholar 

  • Englund E, Liang F, Lindberg P (2016) Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Sci Rep 6:36640

    Article  CAS  Google Scholar 

  • Englund E, Pattanaik B, Ubhayasekera SJ, Stensjo K, Bergquist J, Lindberg P (2014) Production of squalene in Synechocystis sp. PCC 6803. PLoS One 9(3):e90270

    Article  CAS  Google Scholar 

  • Englund E, Shabestary K, Hudson EP, Lindberg P (2018) Systematic overexpression study to find target enzymes enhancing production of terpenes in Synechocystis PCC 6803, using isoprene as a model compound. Metab Eng 49:164–177

    Article  CAS  Google Scholar 

  • Erdrich P, Knoop H, Steuer R, Klamt S (2014) Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling. Microb Cell Factories 13:128

    Article  CAS  Google Scholar 

  • Ermakova M, Battchikova N, Richaud P, Leino H, Kosourov S, Isojarvi J, Peltier G, Flores E, Cournac L, Allahverdiyeva Y, Aro EM (2014) Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 111(30):11205–11210

    Article  CAS  Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238

    Article  CAS  Google Scholar 

  • Fathima AM, Chuang D, Lavina WA, Liao J, Putri SP, Fukusaki E (2018) Iterative cycle of widely targeted metabolic profiling for the improvement of 1-butanol titer and productivity in Synechococcus elongatus. Biotechnol Biofuels 11:188

    Article  CAS  Google Scholar 

  • Fedeson DT, Saake P, Calero P, Nikel PI, Ducat DC (2020) Biotransformation of 2,4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida. Microb Biotechnol 13(4):997–1011

    Article  CAS  Google Scholar 

  • Ferreira EA, Pacheco CC, Pinto F, Pereira J, Lamosa P, Oliveira P, Kirov B, Jaramillo A, Tamagnini P (2018) Expanding the toolbox for Synechocystis sp. PCC 6803: validation of replicative vectors and characterization of a novel set of promoters. Synth Biol (Oxf) 3(1):ysy014

    Article  CAS  Google Scholar 

  • Fu P (2009) Genome-scale modeling of Synechocystis sp. PCC 6803 and prediction of pathway insertion. J Chem Technol Biotechnol 84(4):473–483

    Article  CAS  Google Scholar 

  • Gademann K (2011) Out in the green: biologically active metabolites produced by cyanobacteria. Chimia 65(6):416–419

    Article  CAS  Google Scholar 

  • Gao X, Gao F, Liu D, Zhang H, Nie X, Yang C (2016) Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ Sci 9(4):1400–1411

    Article  CAS  Google Scholar 

  • Geerts D, Bovy A, de Vrieze G, Borrias M, Weisbeek P (1995) Inducible expression of heterologous genes targeted to a chromosomal platform in the cyanobacterium Synechococcus sp. PCC 7942. Microbiology 141(Pt 4):831–841

    Article  CAS  Google Scholar 

  • Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13(2):247–261

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Pakrasi HB, Maranas CD (2018) Elucidation of photoautotrophic carbon flux topology in Synechocystis PCC 6803 using genome-scale carbon map** models. Metab Eng 47:190–199

    Article  CAS  Google Scholar 

  • Gordon GC, Korosh TC, Cameron JC, Markley AL, Begemann MB, Pfleger BF (2016) CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metab Eng 38:170–179

    Article  CAS  Google Scholar 

  • Gudmundsson S, Agudo L, Nogales J (2017) 4- applications of genome-scale metabolic models of microalgae and cyanobacteria in biotechnology. In: Gonzalez-Fernandez C, Muñoz R (eds) Microalgae-based biofuels and bioproducts. Woodhead Publishing, Sawston, UK, pp 93–111

    Chapter  Google Scholar 

  • Hadicke O, Klamt S (2010) CASOP: a computational approach for strain optimization aiming at high productivity. J Biotechnol 147(2):88–101

    Article  CAS  Google Scholar 

  • Hadicke O, Klamt S (2011) Computing complex metabolic intervention strategies using constrained minimal cut sets. Metab Eng 13(2):204–213

    Article  CAS  Google Scholar 

  • Hamilton JJ, Reed JL (2012) Identification of functional differences in metabolic networks using comparative genomics and constraint-based models. PLoS One 7(4):e34670

    Article  CAS  Google Scholar 

  • Hansel A, Lindblad P (1998) Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source. Appl Microbiol Biotechnol 50(2):153–160

    Article  CAS  Google Scholar 

  • Happe T, Schutz K, Bohme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182(6):1624–1631

    Article  CAS  Google Scholar 

  • Haselkorn R (1991) Genetic systems in cyanobacteria. In Methods in enzymology, vol 204. Academic Press, Cambridge, MA, pp 418–430

    Google Scholar 

  • Hays SG, Ducat DC (2015) Engineering cyanobacteria as photosynthetic feedstock factories. Photosynth Res 123(3):285–295

    Article  CAS  Google Scholar 

  • Hays SG, Yan LLW, Silver PA, Ducat DC (2017) Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. J Biol Eng 11:4

    Article  CAS  Google Scholar 

  • He Q, Hemme CL, Jiang H, He Z, Zhou J (2011) Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of clostridium and Thermoanaerobacter spp. Bioresour Technol 102(20):9586–9592

    Article  CAS  Google Scholar 

  • Heidorn T, Camsund D, Huang HH, Lindberg P, Oliveira P, Stensjo K, Lindblad P (2011) Synthetic biology in cyanobacteria: Engineering and analyzing novel functions. Methods Enzymol 497:539–579

    Article  CAS  Google Scholar 

  • Hendry JI, Gopalakrishnan S, Ungerer J, Pakrasi HB, Tang YJ, Maranas CD (2019) Genome-scale fluxome of Synechococcus elongatus UTEX 2973 using transient 13C-labeling data. Plant Physiol 179(2):761–769

    Article  CAS  Google Scholar 

  • Hendry JI, Prasannan CB, Joshi A, Dasgupta S, Wangikar PP (2016) Metabolic model of Synechococcus sp. PCC 7002: prediction of flux distribution and network modification for enhanced biofuel production. Bioresour Technol 213:190–197

    Article  CAS  Google Scholar 

  • Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards develo** cyanobacterial biotechnology. Nucleic Acids Res 38(8):2577–2593

    Article  CAS  Google Scholar 

  • Immethun CM, DeLorenzo DM, Focht CM, Gupta D, Johnson CB, Moon TS (2017) Physical, chemical, and metabolic state sensors expand the synthetic biology toolbox for Synechocystis sp. PCC 6803. Biotechnol Bioeng 114(7):1561–1569

    Article  CAS  Google Scholar 

  • Jacobsen JH, Frigaard NU (2014) Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab Eng 21:60–70

    Article  CAS  Google Scholar 

  • Jaiswal D, Sengupta A, Sengupta S, Madhu S, Pakrasi HB, Wangikar PP (2020) A novel cyanobacterium Synechococcus elongatus PCC 11802 has distinct genomic and Metabolomic characteristics compared to its neighbor PCC 11801. Sci Rep 10(1):191

    Article  CAS  Google Scholar 

  • Jaiswal D, Sengupta A, Sohoni S, Sengupta S, Phadnavis AG, Pakrasi HB, Wangikar PP (2018) Genome features and biochemical characteristics of a robust, fast growing and naturally transformable cyanobacterium Synechococcus elongatus PCC 11801 isolated from India. Sci Rep 8(1):16632

    Article  CAS  Google Scholar 

  • Jazmin LJ, Xu Y, Cheah YE, Adebiyi AO, Johnson CH, Young JD (2017) Isotopically nonstationary 13C flux analysis of cyanobacterial isobutyraldehyde production. Metab Eng 42:9–18

    Article  CAS  Google Scholar 

  • Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81(7):2506–2514

    Article  CAS  Google Scholar 

  • Jiang Y, Dong W, **n F, Jiang M (2020) Designing synthetic microbial consortia for biofuel production. Trends Biotechnol 38(8):828–831

    Article  CAS  Google Scholar 

  • Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459

    Article  CAS  Google Scholar 

  • Johnson TJ, Katuwal S, Anderson GA, Gu L, Zhou R, Gibbons WR (2018) Photobioreactor cultivation strategies for microalgae and cyanobacteria. Biotechnol Prog 34(4):811–827

    Article  CAS  Google Scholar 

  • Jones PR (2014) Genetic instability in cyanobacteria - an elephant in the room? Front Bioeng Biotechnol 2:12

    Article  Google Scholar 

  • Joshi CJ, Peebles CAM, Prasad A (2017) Modeling and analysis of flux distribution and bioproduct formation in Synechocystis sp. PCC 6803 using a new genome-scale metabolic reconstruction. Algal Res 27:295–310

    Article  Google Scholar 

  • Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8(5):205–213

    Article  CAS  Google Scholar 

  • Kaneko T, Tabata S (1997) Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 38(11):1171–1176

    Article  CAS  Google Scholar 

  • Kannaiyan S, Rao KK, Hall DO (1994) Immobilization of Anabaena azollae from Azolla filiculoides in polyvinyl foam for ammonia production in a photobioreactor system. World J Microbiol Biotechnol 10(1):55–58

    Article  CAS  Google Scholar 

  • Kanno M, Carroll AL, Atsumi S (2017) Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nat Commun 8:14724

    Article  CAS  Google Scholar 

  • Khetkorn W, Baebprasert W, Lindblad P, Incharoensakdi A (2012) Redirecting the electron flow towards the nitrogenase and bidirectional Hox-hydrogenase by using specific inhibitors results in enhanced H2 production in the cyanobacterium Anabaena siamensis TISTR 8012. Bioresour Technol 118:265–271

    Article  CAS  Google Scholar 

  • Kim HU, Kim TY, Lee SY (2008) Metabolic flux analysis and metabolic engineering of microorganisms. Mol BioSyst 4(2):113–120

    Article  Google Scholar 

  • Kim J, Reed JL (2010) OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst Biol 4:53

    Article  CAS  Google Scholar 

  • Klanchui A, Dulsawat S, Chaloemngam K, Cheevadhanarak S, Prommeenate P, Meechai A (2018) An improved genome-scale metabolic model of Arthrospira platensis C1 (iAK888) and its application in glycogen overproduction. Meta 8(4):84

    Google Scholar 

  • Klanchui A, Khannapho C, Phodee A, Cheevadhanarak S, Meechai A (2012) iAK692: a genome-scale metabolic model of Spirulina platensis C1. BMC Syst Biol 6:71

    Article  CAS  Google Scholar 

  • Knoop H, Grundel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, Steuer R (2013) Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput Biol 9(6):e1003081

    Article  CAS  Google Scholar 

  • Knoot CJ, Ungerer J, Wangikar PP, Pakrasi HB (2018) Cyanobacteria: promising biocatalysts for sustainable chemical production. J Biol Chem 293(14):5044–5052

    Article  CAS  Google Scholar 

  • Koffas M, Stephanopoulos G (2005) Strain improvement by metabolic engineering: lysine production as a case study for systems biology. Curr Opin Biotechnol 16(3):361–366

    Article  CAS  Google Scholar 

  • Kopka J, Schmidt S, Dethloff F, Pade N, Berendt S, Schottkowski M, Martin N, Duhring U, Kuchmina E, Enke H, Kramer D, Wilde A, Hagemann M, Friedrich A (2017) Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. Biotechnol Biofuels 10:56

    Article  CAS  Google Scholar 

  • Kosourov S, Murukesan G, Seibert M, Allahverdiyeva Y (2017) Evaluation of light energy to H2 energy conversion efficiency in thin films of cyanobacteria and green alga under photoautotrophic conditions. Algal Res 28:253–263

    Article  Google Scholar 

  • Lagarde D, Beuf L, Vermaas W (2000) Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 66(1):64–72

    Article  CAS  Google Scholar 

  • Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13(4):353–363

    Article  CAS  Google Scholar 

  • Lan EI, Ro SY, Liao JC (2013) Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ Sci 6(9):2672–2681

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  Google Scholar 

  • Leino H, Kosourov SN, Saari L, Sivonen K, Tsygankov AA, Aro E-M, Allahverdiyeva Y (2012) Extended H2 photoproduction by N2-fixing cyanobacteria immobilized in thin alginate films. Int J Hydrog Energy 37(1):151–161

    Article  CAS  Google Scholar 

  • Li T, Li CT, Butler K, Hays SG, Guarnieri MT, Oyler GA, Betenbaugh MJ (2017) Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform. Biotechnol Biofuels 10:55

    Article  CAS  Google Scholar 

  • Likic VA, McConville MJ, Lithgow T, Bacic A (2010) Systems biology: the next frontier for bioinformatics. Adv. Bioinformatics 2010:268925

    Google Scholar 

  • Lin P-C, Saha R, Zhang F, Pakrasi HB (2017) Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocystis sp. PCC 6803. Sci Rep 7(1):17503

    Article  CAS  Google Scholar 

  • Lin Y, Schiavo S, Orjala J, Vouros P, Kautz R (2008) Microscale LC-MS-NMR platform applied to the identification of active cyanobacterial metabolites. Anal Chem 80(21):8045–8054

    Article  CAS  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12(1):70–79

    Article  CAS  Google Scholar 

  • Lindblad P, Fuente D, Borbe F, Cicchi B, Conejero JA, Couto N, Čelešnik H, Diano MM, Dolinar M, Esposito S, Evans C, Ferreira EA, Keller J, Khanna N, Kind G, Landels A, Lemus L, Noirel J, Ocklenburg S, Oliveira P, Pacheco CC, Parker JL, Pereira J, Pham TK, Pinto F, Rexroth S, Rögner M, Schmitz H-J, Benavides AMS, Siurana M, Tamagnini P, Touloupakis E, Torzillo G, Urchueguía JF, Wegelius A, Wiegand K, Wright PC, Wutschel M, Wünschiers R (2019) CyanoFactory, a European consortium to develop technologies needed to advance cyanobacteria as chassis for production of chemicals and fuels. Algal Res 41:101510

    Article  Google Scholar 

  • Liu D, Pakrasi HB (2018) Exploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803. Microb Cell Factories 17(1):48

    Article  CAS  Google Scholar 

  • Liu X, Miao R, Lindberg P, Lindblad P (2019) Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO2 in cyanobacteria. Energy Environ Sci 12(9):2765–2777

    Article  Google Scholar 

  • Lu H, Li F, Sanchez BJ, Zhu Z, Li G, Domenzain I, Marcisauskas S, Anton PM, Lappa D, Lieven C, Beber ME, Sonnenschein N, Kerkhoven EJ, Nielsen J (2019) A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat Commun 10(1):3586

    Article  CAS  Google Scholar 

  • Ma AT, Schmidt CM, Golden JW (2014) Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Appl Environ Microbiol 80(21):6704–6713

    Article  CAS  Google Scholar 

  • Malatinszky D, Steuer R, Jones PR (2017) A comprehensively curated genome-scale two-cell model for the heterocystous cyanobacterium Anabaena sp. PCC 7120. Plant Physiol 173(1):509–523

    Article  CAS  Google Scholar 

  • Malek Shahkouhi A, Motamedian E (2020) Reconstruction of a regulated two-cell metabolic model to study biohydrogen production in a diazotrophic cyanobacterium Anabaena variabilis ATCC 29413. PLoS One 15(1):e0227977

    Article  CAS  Google Scholar 

  • Markley AL, Begemann MB, Clarke RE, Gordon GC, Pfleger BF (2015) Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. ACS Synth Biol 4(5):595–603

    Article  CAS  Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88(10):3389–3401

    Article  CAS  Google Scholar 

  • Marsullo M, Mian A, Ensinas AV, Manente G, Lazzaretto A, Marechal F (2015) Dynamic modeling of the microalgae cultivation phase for energy production in open raceway ponds and flat panel photobioreactors. Front Energy Res 3:41

    Article  Google Scholar 

  • Masukawa H, Mochimaru M, Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58(5):618–624

    Article  CAS  Google Scholar 

  • Melnicki MR, Pinchuk GE, Hill EA, Kucek LA, Stolyar SM, Fredrickson JK, Konopka AE, Beliaev AS (2013) Feedback-controlled LED photobioreactor for photophysiological studies of cyanobacteria. Bioresour Technol 134:127–133

    Article  CAS  Google Scholar 

  • Miao R, Liu X, Englund E, Lindberg P, Lindblad P (2017) Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases. Metab Eng Commun 5:45–53

    Article  Google Scholar 

  • Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci U S A 110(36):14592–14597

    Article  CAS  Google Scholar 

  • Montagud A, Navarro E, Fernandez de Cordoba P, Urchueguia JF, Patil KR (2010) Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC Syst Biol 4:156

    Article  CAS  Google Scholar 

  • Montagud A, Zelezniak A, Navarro E, de Cordoba PF, Urchueguia JF, Patil KR (2011) Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC 6803. Biotechnol J 6(3):330–342

    Article  CAS  Google Scholar 

  • Mueller TJ, Berla BM, Pakrasi HB, Maranas CD (2013) Rapid construction of metabolic models for a family of cyanobacteria using a multiple source annotation workflow. BMC Syst Biol 7:142

    Article  Google Scholar 

  • Mueller TJ, Ungerer JL, Pakrasi HB, Maranas CD (2017) Identifying the metabolic differences of a fast-growth phenotype in Synechococcus UTEX 2973. Sci Rep 7:41569

    Article  CAS  Google Scholar 

  • Mur LR, Gons HJ, van Liere L (1977) Some experiments on the competition between green algae and blue-green bacteria in light-limited environments. FEMS Microbiol Lett 1(6):335–338

    Article  Google Scholar 

  • Mutalik VK, Guimaraes JC, Cambray G, Lam C, Christoffersen MJ, Mai QA, Tran AB, Paull M, Keasling JD, Arkin AP, Endy D (2013) Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods 10(4):354–360

    Article  CAS  Google Scholar 

  • Nedbal L, Trtilek M, Cerveny J, Komarek O, Pakrasi HB (2008) A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnol Bioeng 100(5):902–910

    Article  CAS  Google Scholar 

  • Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci U S A 109(7):2678–2683

    Article  CAS  Google Scholar 

  • Noguchi S, Putri SP, Lan EI, Lavina WA, Dempo Y, Bamba T, Liao JC, Fukusaki E (2016) Quantitative target analysis and kinetic profiling of acyl-CoAs reveal the rate-limiting step in cyanobacterial 1-butanol production. Metabolomics 12:26

    Article  CAS  Google Scholar 

  • Nozzi NE, Oliver JW, Atsumi S (2013) Cyanobacteria as a platform for biofuel production. Front Bioeng Biotechnol 1:7

    Article  Google Scholar 

  • Ohbayashi R, Akai H, Yoshikawa H, Hess WR, Watanabe S (2016) A tightly inducible riboswitch system in Synechocystis sp. PCC 6803. J Gen Appl Microbiol 62(3):154–159

    Article  CAS  Google Scholar 

  • Oliver NJ, Rabinovitch-Deere CA, Carroll AL, Nozzi NE, Case AE, Atsumi S (2016) Cyanobacterial metabolic engineering for biofuel and chemical production. Curr Opin Chem Biol 35:43–50

    Article  CAS  Google Scholar 

  • Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Article  CAS  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci U S A 95(15):8660–8664

    Article  CAS  Google Scholar 

  • Patil KR, Rocha I, Forster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform 6:308

    Article  CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177

    Article  CAS  Google Scholar 

  • Pruvost J, Le Borgne F, Artu A, Cornet J-F, Legrand J (2016) Chapter five - industrial photobioreactors and scale-up concepts. In: Legrand J (ed) Advances in Chemical Engineering, vol 48. Academic Press, Cambridge, MA, pp 257–310

    Google Scholar 

  • Qian X, Kim MK, Kumaraswamy GK, Agarwal A, Lun DS, Dismukes GC (2017) Flux balance analysis of photoautotrophic metabolism: uncovering new biological details of subsystems involved in cyanobacterial photosynthesis. Biochim Biophys Acta Bioenerg 1858(4):276–287

    Article  CAS  Google Scholar 

  • Raleiras P, Khanna N, Miranda H, Mészáros LS, Krassen H, Ho F, Battchikova N, Aro E-M, Magnuson A, Lindblad P, Styring S (2016) Turning around the electron flow in an uptake hydrogenase. EPR spectroscopy and in vivo activity of a designed mutant in HupSL from Nostoc punctiforme. Energy Environ Sci 9(2):581–594

    Article  CAS  Google Scholar 

  • Rodrigues JS, Lindberg P (2021) Metabolic engineering of Synechocystis sp. PCC 6803 for improved bisabolene production. Metabol Eng Commun 12:e00159

    Article  Google Scholar 

  • Roumezi B, Avilan L, Risoul V, Brugna M, Rabouille S, Latifi A (2020) Overproduction of the Flv3B flavodiiron, enhances the photobiological hydrogen production by the nitrogen-fixing cyanobacterium Nostoc PCC 7120. Microb Cell Factories 19(1):65

    Article  CAS  Google Scholar 

  • Ruffing AM (2014) Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as host. Front Bioeng Biotechnol 2:17

    Article  Google Scholar 

  • Saha R, Verseput AT, Berla BM, Mueller TJ, Pakrasi HB, Maranas CD (2012) Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. PLoS One 7(10):e48285

    Article  CAS  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355

    Article  CAS  Google Scholar 

  • Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  Google Scholar 

  • Savla N, Shinde A, Sonawane K, Mekuto L, Chowdhary P, Pandit S (2020) Microbial hydrogen production: fundamentals to application. Microorgan Sustain Environ Health 21:343

    Article  Google Scholar 

  • Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99(23):15112–15117

    Article  CAS  Google Scholar 

  • Sengupta A, Madhu S, Wangikar PP (2020) A library of tunable, portable, and inducer-free promoters derived from cyanobacteria. ACS Synth Biol 9(7):1790–1801

    Article  CAS  Google Scholar 

  • Shabestary K, Hudson EP (2016) Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis. Metab Eng Commun 3:216–226

    Article  Google Scholar 

  • Shastri AA, Morgan JA (2007) A transient isotopic labeling methodology for 13C metabolic flux analysis of photoautotrophic microorganisms. Phytochemistry 68(16–18):2302–2312

    Article  CAS  Google Scholar 

  • Shen CR, Liao JC (2012) Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy Environ Sci 5(11):9574–9583

    Article  CAS  Google Scholar 

  • Slegers PM, Wijffels RH, van Straten G, van Boxtel AJB (2011) Design scenarios for flat panel photobioreactors. Appl Energy 88(10):3342–3353

    Article  CAS  Google Scholar 

  • Song HS, McClure RS, Bernstein HC, Overall CC, Hill EA, Beliaev AS (2015) Integrated in silico analyses of regulatory and metabolic networks of Synechococcus sp. PCC 7002 reveal relationships between gene centrality and essentiality. Life (Basel) 5(2):1127–1140

    CAS  Google Scholar 

  • Song K, Tan X, Liang Y, Lu X (2016) The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Appl Microbiol Biotechnol 100(18):7865–7875

    Article  CAS  Google Scholar 

  • Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225–274

    Article  CAS  Google Scholar 

  • Summers ML, Wallis JG, Campbell EL, Meeks JC (1995) Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133. J Bacteriol 177(21):6184–6194

    Article  CAS  Google Scholar 

  • Sun T, Li S, Song X, Diao J, Chen L, Zhang W (2018) Toolboxes for cyanobacteria: recent advances and future direction. Biotechnol Adv 36(4):1293–1307

    Article  CAS  Google Scholar 

  • Sveshnikov DA, Sveshnikova NV, Rao KK, Hall DO (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiol Lett 147(2):297–301

    Article  CAS  Google Scholar 

  • Taikhao S, Junyapoon S, Incharoensakdi A, Phunpruch S (2013) Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica. J Appl Phycol 25(2):575–585

    Article  CAS  Google Scholar 

  • Takahama K, Matsuoka M, Nagahama K, Ogawa T (2003) Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbA1 locus. J Biosci Bioeng 95(3):302–305

    Article  CAS  Google Scholar 

  • Tamagnini P, Leitao E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31(6):692–720

    Article  CAS  Google Scholar 

  • Tan X, Liang F, Cai K, Lu X (2013) Application of the FLP/FRT recombination system in cyanobacteria for construction of markerless mutants. Appl Microbiol Biotechnol 97(14):6373–6382

    Article  CAS  Google Scholar 

  • Tan X, Yao L, Gao Q, Wang W, Qi F, Lu X (2011) Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab Eng 13(2):169–176

    Article  CAS  Google Scholar 

  • Therien JB, Zadvornyy OA, Posewitz MC, Bryant DA, Peters JW (2014) Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002. Biotechnol Biofuels 7(1):154

    Article  CAS  Google Scholar 

  • Thiel K, Mulaku E, Dandapani H, Nagy C, Aro EM, Kallio P (2018) Translation efficiency of heterologous proteins is significantly affected by the genetic context of RBS sequences in engineered cyanobacterium Synechocystis sp. PCC 6803. Microb Cell Factories 17(1):34

    Article  CAS  Google Scholar 

  • Till P, Toepel J, Buhler B, Mach RL, Mach-Aigner AR (2020) Regulatory systems for gene expression control in cyanobacteria. Appl Microbiol Biotechnol 104(5):1977–1991

    Article  CAS  Google Scholar 

  • Tomioka N, Sugiura M (1983) The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans. Mol Gen Genet 191(1):46–50

    Article  CAS  Google Scholar 

  • Touloupakis E, Rontogiannis G, Silva Benavides AM, Cicchi B, Ghanotakis DF, Torzillo G (2016) Hydrogen production by immobilized Synechocystis sp. PCC 6803. Int J Hydrog Energy 41(34):15181–15186

    Article  CAS  Google Scholar 

  • Triana J, Montagud A, Siurana M, Fuente D, Urchueguia A, Gamermann D, Torres J, Tena J, de Cordoba PF, Urchueguia JF (2014) Generation and evaluation of a genome-scale metabolic network model of Synechococcus elongatus PCC7942. Meta 4(3):680–698

    Google Scholar 

  • Ungerer J, Pakrasi HB (2016) Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep 6:39681

    Article  CAS  Google Scholar 

  • Ungerer J, Tao L, Davis M, Ghirardi M, Maness P-C, Yu J (2012) Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energy Environ Sci 5(10):8998–9006

    Article  CAS  Google Scholar 

  • Ungerer J, Wendt KE, Hendry JI, Maranas CD, Pakrasi HB (2018) Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973. Proc Natl Acad Sci U S A 115(50):E11761–E11770

    Article  CAS  Google Scholar 

  • Vajravel S, Sirin S, Kosourov S, Allahverdiyeva Y (2020) Towards sustainable ethylene production with cyanobacterial artificial biofilms. Green Chem 22(19):6404–6414

    Article  CAS  Google Scholar 

  • Vermaas WF (2001) Photosynthesis and respiration in cyanobacteria. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Vijayakumar S, Menakha M (2015) Pharmaceutical applications of cyanobacteria—a review. JACME 5(1):15–23

    Google Scholar 

  • Volgusheva A, Kosourov S, Lynch F, Allahverdiyeva Y (2019) Immobilized heterocysts as microbial factories for sustainable nitrogen fixation. J Biotechnol 4:100016

    Article  CAS  Google Scholar 

  • Vu TT, Hill EA, Kucek LA, Konopka AE, Beliaev AS, Reed JL (2013) Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production. Biotechnol J 8(5):619–630

    Article  CAS  Google Scholar 

  • Vu TT, Stolyar SM, Pinchuk GE, Hill EA, Kucek LA, Brown RN, Lipton MS, Osterman A, Fredrickson JK, Konopka AE, Beliaev AS, Reed JL (2012) Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142. PLoS Comput Biol 8(4):e1002460

    Article  CAS  Google Scholar 

  • Wahlen BD, Willis RM, Seefeldt LC (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102(3):2724–2730

    Article  CAS  Google Scholar 

  • Wang B, Eckert C, Maness PC, Yu J (2018) A genetic toolbox for modulating the expression of heterologous genes in the cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 7(1):276–286

    Article  CAS  Google Scholar 

  • Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol Biofuels 6(1):69

    Article  CAS  Google Scholar 

  • Wegelius A, Khanna N, Esmieu C, Barone GD, Pinto F, Tamagnini P, Berggren G, Lindblad P (2018a) Generation of a functional, semisynthetic [FeFe]-hydrogenase in a photosynthetic microorganism. Energy Environ Sci 11(11):3163–3167

    Article  CAS  Google Scholar 

  • Wegelius A, Li X, Turco F, Stensjö K (2018b) Design and characterization of a synthetic minimal promoter for heterocyst-specific expression in filamentous cyanobacteria. PLoS One 13(9):e0203898

    Article  CAS  Google Scholar 

  • Weiss TL, Young EJ, Ducat DC (2017) A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metab Eng 44:236–245

    Article  CAS  Google Scholar 

  • Welkie DG, Rubin BE, Chang YG, Diamond S, Rifkin SA, LiWang A, Golden SS (2018) Genome-wide fitness assessment during diurnal growth reveals an expanded role of the cyanobacterial circadian clock protein KaiA. Proc Natl Acad Sci U S A 115(30):E7174–E7183

    Article  CAS  Google Scholar 

  • Wendt KE, Ungerer J, Cobb RE, Zhao H, Pakrasi HB (2016) CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Factories 15(1):115

    Article  CAS  Google Scholar 

  • Wichmann J, Lauersen KJ, Biondi N, Christensen M, Guerra T, Hellgardt K, Kühner S, Kuronen M, Lindberg P, Rösch C, Yunus IS, Jones P, Lindblad P, Kruse O (2021) Engineering biocatalytic solar fuel production: the PHOTOFUEL consortium. Trends in Biotechnolpgy 39(4):323–327

    Article  CAS  Google Scholar 

  • Wiechert W, Noh K (2005) From stationary to instationary metabolic flux analysis. Adv Biochem Eng Biotechnol 92:145–172

    CAS  Google Scholar 

  • Williams JGK (1988) Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. In: Methods in enzymology, vol 167. Academic Press, Cambridge, MA, pp 766–778

    Google Scholar 

  • Wlodarczyk A, Selao TT, Norling B, Nixon PJ (2020) Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production. Commun Biol 3(1):215

    Article  CAS  Google Scholar 

  • Woo HM (2017) Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms. Curr Opin Biotechnol 45:1–7

    Article  CAS  Google Scholar 

  • Wutthithien P, Lindblad P, Incharoensakdi A (2019) Improvement of photobiological hydrogen production by suspended and immobilized cells of the N2-fixing cyanobacterium Fischerella muscicola TISTR 8215. J Appl Phycol 31(6):3527–3536

    Article  CAS  Google Scholar 

  • **ong W, Morgan JA, Ungerer J, Wang B, Maness P-C, Yu J (2015) The plasticity of cyanobacterial metabolism supports direct CO2 conversion to ethylene. Nat Plants 1(5):15053

    Article  CAS  Google Scholar 

  • Yang YT, Wang CY (2016) Review of microfluidic photobioreactor technology for metabolic engineering and synthetic biology of cyanobacteria and microalgae. Micromachines 7(10):185

    Article  CAS  Google Scholar 

  • Yao L, Cengic I, Anfelt J, Hudson EP (2016) Multiple gene repression in cyanobacteria using CRISPRi. ACS Synth Biol 5(3):207–212

    Article  CAS  Google Scholar 

  • Yoshikawa K, Aikawa S, Kojima Y, Toya Y, Furusawa C, Kondo A, Shimizu H (2015) Construction of a genome-scale metabolic model of Arthrospira platensis NIES-39 and metabolic Design for Cyanobacterial Bioproduction. PLoS One 10(12):e0144430

    Article  CAS  Google Scholar 

  • Yoshikawa K, Kojima Y, Nakajima T, Furusawa C, Hirasawa T, Shimizu H (2011) Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC6803. Appl Microbiol Biotechnol 92(2):347–358

    Article  CAS  Google Scholar 

  • You L, Berla B, He L, Pakrasi HB, Tang YJ (2014) 13C-MFA delineates the photomixotrophic metabolism of Synechocystis sp. PCC 6803 under light- and carbon-sufficient conditions. Biotechnol J 9(5):684–692

    Article  CAS  Google Scholar 

  • Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Map** photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metab Eng 13(6):656–665

    Article  CAS  Google Scholar 

  • Yu J, Liberton M, Cliften PF, Head RD, Jacobs JM, Smith RD, Koppenaal DW, Brand JJ, Pakrasi HB (2015) Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Sci Rep 5:8132

    Article  CAS  Google Scholar 

  • Yunus IS, Palma A, Trudeau DL, Tawfik DS, Jones PR (2020) Methanol-free biosynthesis of fatty acid methyl ester (FAME) in Synechocystis sp. PCC 6803. Metab Eng 57:217–227

    Article  CAS  Google Scholar 

  • Zhang C, Hua Q (2015) Applications of genome-scale metabolic models in biotechnology and systems medicine. Front Physiol 6:413

    Google Scholar 

  • Zhao W, Guo Q, Zhao J (2007) A membrane-associated Mn-superoxide dismutase protects the photosynthetic apparatus and nitrogenase from oxidative damage in the cyanobacterium Anabaena sp. PCC 7120. Plant Cell Physiol 48(4):563–572

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Energy Agency (project numbers P46607-1 and 38334-3), the NordForskNCoE program “NordAqua” (project number 82845), and the Svenska Forskningsrådet Formas (project number 2016-01325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lindblad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

**e, H., Kukil, K., Lindberg, P., Miao, R., Lindblad, P. (2022). Metabolic Rewiring and Cultivation Optimization for Photosynthetic Biofuel Production in Cyanobacteria. In: Chowdhary, P., Khanna, N., Pandit, S., Kumar, R. (eds) Bio-Clean Energy Technologies: Volume 1. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-8090-8_3

Download citation

Publish with us

Policies and ethics

Navigation