Metal–Organic Frameworks (MOFs) as Heterogeneous Catalysts: An Overview

  • Chapter
  • First Online:
Metal-Organic Frameworks (MOFs) as Catalysts

Abstract

Researchers experience great thrills when they can design their catalysts to synthesize their target materials and such opportunities are possible by metal–organic frameworks (MOFs). These are hybrid materials demolishing the demarcation between organic and inorganic molecules. The inherent problems encountered with homogeneous catalysts have been effortlessly overcome using heterogeneous catalysts in the form of MOFs. Their intrinsic thermocatalytic features and ability to act as perfect hosts for metal nanoparticles (NPs) and as templates for designing new nanocatalysts are their assets that can be explored for various heterogeneous catalytic processes. The engineered MOFs possess programmable catalytic profiles which can be exploited for a wide range of reactions. The underlying chapter critically reviews the heterogeneous catalytic performances of MOFs in view of their dynamic bonds between the metal centers and organic molecules which offer them as highly localized and effective sites for suitable catalysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MOF:

Metal organic framework

ZIFs:

Zeolitic imidazolate frameworks

LDH:

Layered double hydroxides

ORR:

Reduction of oxygen

NPs:

Nanoparticles

References

  1. Lin Z, Bian W, Zheng J, Cai Z (2015) Magnetic metal-organic framework nanocomposites for enrichment and direct detection of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Chem Commun 51:8785–8788. https://doi.org/10.1039/c5cc02495a

    Article  CAS  Google Scholar 

  2. Fu YY, Yang CX, Yan XP (2013) Incorporation of metal-organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules. Chem Commun 49:7162–7164. https://doi.org/10.1039/c3cc43017k

    Article  CAS  Google Scholar 

  3. Chang CL, Qi XY, Zhang JW, Qiu YM, Li XJ, Wang X, Bai Y, Sun JL, Liu HW (2015) Facile synthesis of magnetic homochiral metal-organic frameworks for “enantioselective fishing.” Chem Commun 51:3566–3569. https://doi.org/10.1039/c4cc09988e

    Article  CAS  Google Scholar 

  4. Shih YH, Chien CH, Singco B, Hsu CL, Lin CH, Huang HY (2013) Metal-organic frameworks: new matrices for surface-assisted laser desorption-ionization mass spectrometry. Chem Commun 49:4929–4931. https://doi.org/10.1039/c3cc40934a

    Article  CAS  Google Scholar 

  5. Lu G, Hupp JT (2010) Metal-organic frameworks as sensors: a ZIF-8 based fabry-pérot device as a selective sensor for chemical vapors and gases. J Am Chem Soc 132:7832–7833. https://doi.org/10.1021/ja101415b

    Article  CAS  PubMed  Google Scholar 

  6. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science (80- ) 319:939–943. https://doi.org/10.1126/science.1152516

  7. Zheng J, Cheng C, Fang WJ, Chen C, Yan RW, Huai HX, Wang CC (2014) Surfactant-free synthesis of a Fe3O4@ZIF-8 core-shell heterostructure for adsorption of methylene blue. CrystEngComm 16:3960–3964. https://doi.org/10.1039/c3ce42648c

    Article  CAS  Google Scholar 

  8. Sonderegger H, Rameshan C, Lorenz H, Klauser F, Klerks M, Rainer M, Bakry R, Huck CW, Bonn GK (2011) Surface-assisted laser desorption/ionization-mass spectrometry using TiO2-coated steel targets for the analysis of small molecules. Anal Bioanal Chem 401:1963–1974. https://doi.org/10.1007/s00216-011-5255-1

    Article  CAS  PubMed  Google Scholar 

  9. Nitta S, Kawasaki H, Suganuma T, Shigeri Y, Arakawa R (2013) Desorption/ionization efficiency of common amino acids in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) with nanostructured platinum. J Phys Chem C 117:238–245. https://doi.org/10.1021/jp308380z

    Article  CAS  Google Scholar 

  10. Chen G, Ding X, Cao Z, Ye J (2000) Determination of melatonin and pyridoxine in pharmaceutical preparations for health-caring purposes by capillary electrophoresis with electrochemical detection. Anal Chim Acta 408:249–256. https://doi.org/10.1016/S0003-2670(99)00809-0

    Article  CAS  Google Scholar 

  11. Ma R, Lu M, Ding L, Ju H, Cai Z (2013) Surface-assisted laser desorption/ionization mass spectrometric detection of biomolecules by using functional single-walled carbon nanohorns as the matrix. Chem A Eur J 19:102–108. https://doi.org/10.1002/chem.201202838

    Article  CAS  Google Scholar 

  12. Pan C, Xu S, Hu L, Su X, Ou J, Zou H, Guo Z, Zhang Y, Guo B (2005) Using oxidized carbon nanotubes as matrix for analysis of small molecules by MALDI-TOF MS. J Am Soc Mass Spectrom 16:883–892. https://doi.org/10.1016/j.jasms.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  13. Walton BL, Verbeck GF (2014) Soft-landing ion mobility of silver clusters for small-molecule matrix-assisted laser desorption ionization mass spectrometry and imaging of latent fingerprints. Anal Chem 86:8114–8120. https://doi.org/10.1021/ac5010822

    Article  CAS  PubMed  Google Scholar 

  14. Nordström A, Apon JV, Uritboonthai W, Go EP, Siuzdak G (2006) Surfactant-enhanced desorption/ionization on silicon mass spectrometry. Anal Chem 78:272–278. https://doi.org/10.1021/ac051398q

    Article  CAS  PubMed  Google Scholar 

  15. Min Q, Zhang X, Chen X, Li S, Zhu JJ (2014) N-Doped graphene: an alternative carbon-based matrix for highly efficient detection of small molecules by negative ion MALDI-TOF MS. Anal Chem 86:9122–9130. https://doi.org/10.1021/ac501943n

    Article  CAS  PubMed  Google Scholar 

  16. Zhang H, Cha S, Yeung ES (2007) Colloidal graphite-assisted laser desorption/ionization MS and MS n of small molecules. 2. Direct profiling and MS imaging of small metabolites from fruits. Anal Chem 79:6575–6584. https://doi.org/10.1021/ac0706170

    Article  CAS  PubMed  Google Scholar 

  17. Safaei M, Foroughi MM, Ebrahimpoor N, Jahani S, Omidi A, Khatami M (2019) A review on metal-organic frameworks: synthesis and applications. TrAC—Trends Anal Chem 118:401–425. https://doi.org/10.1016/j.trac.2019.06.007

    Article  CAS  Google Scholar 

  18. Lee YR, Kim J, Ahn WS (2013) Synthesis of metal-organic frameworks: a mini review. Korean J Chem Eng 30:1667–1680. https://doi.org/10.1007/s11814-013-0140-6

    Article  CAS  Google Scholar 

  19. Park SE, Chang JS, Young KH, Dae SK, Sung HJ, ** SH (2004) Supramolecular interactions and morphology control in microwave synthesis of nanoporous materials. Catal Surv from Asia 8:91–110. https://doi.org/10.1023/B:CATS.0000026990.25778.a8

    Article  CAS  Google Scholar 

  20. Jhung SH, Chang JS, Hwang JS, Park SE (2003) Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous Mesoporous Mater 64:33–39. https://doi.org/10.1016/S1387-1811(03)00501-8

    Article  CAS  Google Scholar 

  21. Jhung SH, Chang JS, Hwang YK, Grenèche JM, Férey G, Cheetham AK (2005) Isomorphous substitution of transition-metal ions in the nanoporous nickel phosphate VSB-5. J Phys Chem B 109:845–850. https://doi.org/10.1021/jp046188g

    Article  CAS  PubMed  Google Scholar 

  22. Kang KK, Park CH, Ahn WS (1999) Microwave preparation of a titanium-substituted mesoporous molecular sieve. Catal Lett 59:45–49. https://doi.org/10.1023/A:1019004101326

    Article  CAS  Google Scholar 

  23. Schoenecker PM, Belancik GA, Grabicka BE, KSW, (2012) Kinetics Study and crystallization process design for scale-up of UiO-66-NH2 synthesis. AIChE J 59:215–228. https://doi.org/10.1002/aic

    Article  Google Scholar 

  24. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969. https://doi.org/10.1021/cr200304e

    Article  CAS  PubMed  Google Scholar 

  25. Pichon A, Lazuen-Garay A, James SL (2006) Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 8:211–214. https://doi.org/10.1039/b513750k

    Article  CAS  Google Scholar 

  26. Gascon J, Aktay U, Hernandez-Alonso MD, van Klink GPM, Kapteijn F (2009) Amino-based metal-organic frameworks as stable, highly active basic catalysts. J Catal 261:75–87. https://doi.org/10.1016/j.jcat.2008.11.010

    Article  CAS  Google Scholar 

  27. Opanasenko M, Dhakshinamoorthy A, Hwang YK, Chang JS, Garcia H, Čejka J (2013) Superior performance of metal-organic frameworks over zeolites as solid acid catalysts in the prins reaction: green synthesis of nopol. Chemsuschem 6:865–871. https://doi.org/10.1002/cssc.201300032

    Article  CAS  PubMed  Google Scholar 

  28. Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F (2015) Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem Soc Rev 44:6804–6849. https://doi.org/10.1039/c4cs00395k

    Article  CAS  PubMed  Google Scholar 

  29. Li P, Zeng HC (2016) Immobilization of metal-organic framework nanocrystals for advanced design of supported nanocatalysts. ACS Appl Mater Interfaces 8:29551–29564. https://doi.org/10.1021/acsami.6b11775

    Article  CAS  PubMed  Google Scholar 

  30. Zhang T, Lin W (2014) Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev 43:5982–5993. https://doi.org/10.1039/c4cs00103f

    Article  CAS  PubMed  Google Scholar 

  31. Wang S, Wang X (2015) Multifunctional metal-organic frameworks for photocatalysis. Small 11:3097–3112. https://doi.org/10.1002/smll.201500084

    Article  CAS  PubMed  Google Scholar 

  32. Hong J, Chen C, Bedoya FE, Kelsall GH, O’Hare D, Petit C (2016) Carbon nitride nanosheet/metal-organic framework nanocomposites with synergistic photocatalytic activities. Catal Sci Technol 6:5042–5051. https://doi.org/10.1039/c5cy01857a

    Article  CAS  Google Scholar 

  33. Llabre FX, Corma A, Garcia H, Valencia D, Vera C De (2007) <2007_JPC_applications for metal organic frameworks as quantum dot Semiconductors.pdf>. 80–85

    Google Scholar 

  34. Zhou T, Du Y, Borgna A, Hong J, Wang Y, Han J, Zhang W, Xu R (2013) Post-synthesis modification of a metal-organic framework to construct a bifunctional photocatalyst for hydrogen production. Energy Environ Sci 6:3229–3234. https://doi.org/10.1039/c3ee41548a

    Article  CAS  Google Scholar 

  35. Gao D, Wang Z, Wang C, Wang L, Chi Y, Wang M, Zhang J, Wu C, Gu Y, Wang H, Zhao Z (2019) CrPd nanoparticles on NH2-functionalized metal-organic framework as a synergistic catalyst for efficient hydrogen evolution from formic acid. Chem Eng J 361:953–959. https://doi.org/10.1016/j.cej.2018.12.158

    Article  CAS  Google Scholar 

  36. Wu C, Irshad F, Luo M, Zhao Y, Ma X, Wang S (2019) Ruthenium complexes immobilized on an Azolium based metal organic framework for highly efficient conversion of CO2 into formic acid. ChemCatChem 11:1256–1263. https://doi.org/10.1002/cctc.201801701

    Article  CAS  Google Scholar 

  37. To TA, Vo YH, Nguyen HTT, Ha PTM, Doan SH, Doan TLH, Li S, Le HV, Tu TN, Phan NTS (2019) Iron-catalyzed one-pot sequential transformations: synthesis of quinazolinones via oxidative Csp3–H bond activation using a new metal-organic framework as catalyst. J Catal 370:11–20. https://doi.org/10.1016/j.jcat.2018.11.031

    Article  CAS  Google Scholar 

  38. Sun B, Tan H, Liu S, Lyu S, Zhang X, Zhang Y, Li J, Wang L (2019) Novel Cobalt catalysts supported on metal-organic frameworks MIL-53(Al) for the Fischer-Tropsch synthesis. Energy Technol 7. https://doi.org/10.1002/ente.201800802

  39. Ye C, Qi Z, Cai D, Qiu T (2019) Design and synthesis of ionic liquid supported hierarchically porous Zr metal-organic framework as a novel Brønsted-Lewis acidic catalyst in biodiesel synthesis. Ind Eng Chem Res 58:1123–1132. https://doi.org/10.1021/acs.iecr.8b04107

    Article  CAS  Google Scholar 

  40. Chong SY, Wang TT, Cheng LC, Lv HY, Ji M (2019) Metal-organic framework MIL-101-NH 2 -supported acetate-based butylimidazolium ionic liquid as a highly efficient heterogeneous catalyst for the synthesis of 3-Aryl-2-oxazolidinones. Langmuir 35:495–503. https://doi.org/10.1021/acs.langmuir.8b03153

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Xu H, Ouyang S, Ye J (2016) Metal-organic frameworks for photocatalysis. Phys Chem Chem Phys 18:7563–7572. https://doi.org/10.1039/c5cp05885f

    Article  CAS  PubMed  Google Scholar 

  42. Cao A, Zhang L, Wang Y, Zhao H, Deng H, Liu X, Lin Z, Su X, Yue F (2019) 2D–2D Heterostructured UNiMOF/g-C 3 N 4 for enhanced photocatalytic H2 production under visible-light irradiation. ACS Sustain Chem Eng 7:2492–2499. https://doi.org/10.1021/acssuschemeng.8b05396

    Article  CAS  Google Scholar 

  43. Bibi R, Huang H, Kalulu M, Shen Q, Wei L, Oderinde O, Li N, Zhou J (2019) Synthesis of amino-functionalized Ti-MOF derived yolk-shell and hollow heterostructures for enhanced photocatalytic hydrogen production under visible light. ACS Sustain Chem Eng 7:4868–4877. https://doi.org/10.1021/acssuschemeng.8b05352

    Article  CAS  Google Scholar 

  44. Han Y, Xu H, Su Y, Xu Z, Liang, Wang K, Wang W (2019) Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J Catal 370:70–78. https://doi.org/10.1016/j.jcat.2018.12.005

  45. Li CH, Huang CL, Chuah XF, Senthil Raja D, Hsieh CT, Lu SY (2019) Ti-MOF derived TixFe1−xOy shells boost Fe2O3 nanorod cores for enhanced photoelectrochemical water oxidation. Chem Eng J 361:660–670. https://doi.org/10.1016/j.cej.2018.12.097

    Article  CAS  Google Scholar 

  46. Lajevardi A, Tavakkoli Yaraki M, Masjedi A, Nouri A, Hossaini Sadr M (2019) Green synthesis of MOF@Ag nanocomposites for catalytic reduction of methylene blue. J Mol Liq 276:371–378. https://doi.org/10.1016/j.molliq.2018.12.002

    Article  CAS  Google Scholar 

  47. Yi X, He X, Yin F, Chen B, Li G, Yin H (2019) Co-CoO-Co3O4/N-doped carbon derived from metal-organic framework: the addition of carbon black for boosting oxygen electrocatalysis and Zn-Air battery. Electrochim Acta 295:966–977. https://doi.org/10.1016/j.electacta.2018.11.142

    Article  CAS  Google Scholar 

  48. Wang X, Zhou J, Fu H, Li W, Fan X, **n G, Zheng J, Li X (2014) MOF derived catalysts for electrochemical oxygen reduction. J Mater Chem A 2:14064–14070. https://doi.org/10.1039/c4ta01506a

    Article  CAS  Google Scholar 

  49. **a Z, Fang J, Zhang X, Fan L, Barlow AJ, Lin T, Wang S, Wallace GG, Sun G, Wang X (2019) Pt nanoparticles embedded metal-organic framework nanosheets: a synergistic strategy towards bifunctional oxygen electrocatalysis. Appl Catal B Environ 245:389–398. https://doi.org/10.1016/j.apcatb.2018.12.073

    Article  CAS  Google Scholar 

  50. Li J, Huang W, Wang M, ** S, Meng J, Zhao K, ** J, Xu W, Wang Z, Liu X, Chen Q, Xu L, Liao X, Jiang Y, Owusu KA, Jiang B, Chen C, Fan D, Zhou L, Mai L (2019) Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution. ACS Energy Lett 4:285–292. https://doi.org/10.1021/acsenergylett.8b02345

    Article  CAS  Google Scholar 

  51. Zhu M, Ma Q, Ding SY, Zhao YZ, Song WQ, Ren HP, Song XZ, Miao ZC (2019) A molybdenum disulfide and 2D metal-organic framework nanocomposite for improved electrocatalytic hydrogen evolution reaction. Mater Lett 239:155–158. https://doi.org/10.1016/j.matlet.2018.12.108

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, S., Malhotra, P. (2022). Metal–Organic Frameworks (MOFs) as Heterogeneous Catalysts: An Overview. In: Gulati, S. (eds) Metal-Organic Frameworks (MOFs) as Catalysts. Springer, Singapore. https://doi.org/10.1007/978-981-16-7959-9_13

Download citation

Publish with us

Policies and ethics

Navigation