Formation Mechanism of Spherical Submicrometer Particles by Pulsed Laser Melting in Liquid

  • Chapter
  • First Online:
High-Energy Chemistry and Processing in Liquids
  • 494 Accesses

Abstract

Pulsed laser melting in liquid (PLML) has been developed to fabricate crystalline spherical submicrometer particles by irradiating lasers onto raw particles dispersed in a liquid. This technique is based on photothermal processing of particles dispersed in a liquid and is similar to the resha** of noble metals nanoparticles such as Au and Ag. However, this phenomenon can be extended beyond Au and Ag using appropriate laser fluences to reshape or melt agglomerated or aggregated particles from raw particles of various materials (semiconductors, oxides, carbides, etc.) to form large submicrometer particles. The produced particles have a submicrometer size range due to the heating efficiency of raw particles caused by laser irradiation. The formation of spherical particles is controlled by rapid heating above melting points, and the instantaneously formed vapor layers (thermally induced nanobubbles) play a significant role in inducing rapid temperature increase. This chapter discusses how thermally induced nanobubbles enhance the rapid temperature increase as well as the maximum attained temperature. A novel technique for monitoring the formation of thermally induced nanobubbles and the effect of transiently formed chemical species for particle reaction are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Zhang, B. Gökce, S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117, 3990–4103 (2017). https://doi.org/10.1021/acs.chemrev.6b00468

    Article  CAS  PubMed  Google Scholar 

  2. V. Amendola, D. Amans, Y. Ishikawa, N. Koshizaki, S. Scirè, G. Compagnini, S. Reichenberger, S. Barcikowski, Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells, and doped oxide nanoparticles. Chem. Eur. J. 26, 9206–9242 (2020). https://doi.org/10.1002/chem.202000686

    Article  CAS  PubMed  Google Scholar 

  3. Y. Ishikawa, Y. Shimizu, T. Sasaki, N. Koshizaki, Boron carbide spherical particles encapsulated in graphite prepared by pulsed laser irradiation of boron in liquid medium. Appl. Phys. Lett. 91 (2007) 161110. https://doi.org/10.1063/1.2799786

  4. Y. Ishikawa, Q. Feng, N. Koshizaki, Growth fusion of submicron spherical boron carbide particles by repetitive pulsed laser irradiation in liquid media. Appl. Phys. A 99, 797–803 (2010). https://doi.org/10.1007/s00339-010-5745-6

    Article  CAS  Google Scholar 

  5. H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres. Angew. Chem. Int. Ed. Engl. 49, 6361–6364 (2010). https://doi.org/10.1002/anie.201002963

    Article  CAS  PubMed  Google Scholar 

  6. H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, D. Golberg, Size-tailored ZnO submicrometer spheres: bottom-up construction, size-related optical extinction, and selective aniline trap**. Adv. Mater. 23, 1865–1870 (2011). https://doi.org/10.1002/adma.201100078

    Article  CAS  PubMed  Google Scholar 

  7. H. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, D. Golberg, Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells. J. Am. Chem. Soc. 133, 19102–19109 (2011). https://doi.org/10.1021/ja2049463

    Article  CAS  PubMed  Google Scholar 

  8. G. González-Rubio, A. Guerrero-Martínez, L.M. Liz-Marzán, Resha**, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc. Chem. Res. 49, 678–686 (2016). https://doi.org/10.1021/acs.accounts.6b00041

  9. A. Pyatenko, H. Wang, N. Koshizaki, T. Tsuji, Mechanism of pulse laser interaction with colloidal nanoparticles. Laser Photonics Rev. 7, 596–604 (2013). https://doi.org/10.1002/lpor.201300013

    Article  CAS  Google Scholar 

  10. A. Pyatenko, H. Wang, N. Koshizaki, Growth mechanism of monodisperse spherical particles under nanosecond pulsed laser irradiation. J. Phys. Chem. C 118, 4495–4500 (2014). https://doi.org/10.1021/jp411958v

    Article  CAS  Google Scholar 

  11. S. Sakaki, H. Ikenoue, T. Tsuji, Y. Ishikawa, N. Koshizaki, Pulse-width dependence of the cooling effect on sub-micrometer ZnO spherical particle formation by pulsed-laser melting in a liquid. ChemPhysChem 18, 1101–1107 (2017). https://doi.org/10.1002/cphc.201601175

    Article  CAS  PubMed  Google Scholar 

  12. A. F. Mills, Heat Transfer, 2nd ed. 1998, New York: Prentice Hall.

    Google Scholar 

  13. T. Tsuji, S. Sakaki, H. Fujiwara, H. Kikuchi, M. Tsuji, Y. Ishikawa, N. Koshizaki, Stabilizer-concentration effects on the size of gold submicrometer-sized spherical particles prepared using laser-induced agglomeration and melting of colloidal nanoparticles. J. Phys. Chem. C 122, 21659–21666 (2018). https://doi.org/10.1021/acs.jpcc.8b05911

    Article  CAS  Google Scholar 

  14. A. Kanitz, M.R. Kalus, E.L. Gurevich, A. Ostendorf, S. Barcikowski, D. Amans, Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles. Plasma Sources Sci. Technol. 28 (2019) 103001. https://doi.org/10.1088/1361-6595/ab3dbe

    Article  CAS  Google Scholar 

  15. T. Tsuji, D.H. Thang, Y. Okazaki, M. Nakanishi, Y. Tsuboi, M. Tsuji, Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl. Surf. Sci. 254, 5224–5230 (2008). https://doi.org/10.1016/j.apsusc.2008.02.048

    Article  CAS  Google Scholar 

  16. K. Sasaki, N. Takada, Liquid-phase laser ablation. Pure Appl. Chem. 82, 1317–1327 (2010). https://doi.org/10.1351/PAC-CON-09-10-23

    Article  CAS  Google Scholar 

  17. M. DellʼAglio, R. Gaudiuso, O. De Pascale, A. De Giacomo, Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production. Appl. Surf. Sci. 348, 4–9 (2015). https://doi.org/10.1016/j.apsusc.2015.01.082

    Article  CAS  Google Scholar 

  18. S. Reich, A. Letzel, A. Menzel, N. Kretzschmar, B. Gökce, S. Barcikowski, A. Plech, Early appearance of crystalline nanoparticles in pulsed laser ablation in liquids dynamics. Nanoscale 11, 6962–6969 (2019). https://doi.org/10.1039/C9NR01203F

    Article  CAS  PubMed  Google Scholar 

  19. E.Y. Lukianova-Hleb, A.N. Volkov, D.O. Lapotko, Laser pulse duration is critical for the generation of plasmonic nanobubbles. Langmuir 30, 7425–7434 (2014). https://doi.org/10.1021/la5015362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. T. Katayama, K. Setoura, D. Werner, H. Miyasaka, S. Hashimoto, Picosecond-to-nanosecond dynamics of plasmonic nanobubbles from pump-probe spectral measurements of aqueous colloidal gold nanoparticles. Langmuir 30, 9504–9513 (2014). https://doi.org/10.1021/la500663x

    Article  CAS  PubMed  Google Scholar 

  21. D. Lohse, X. Zhang, Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87, 981–1035 (2015). https://doi.org/10.1103/RevModPhys.87.981

    Article  CAS  Google Scholar 

  22. Y. Tabayashi, S. Sakaki, N. Koshizaki, Y. Yamauchi, Y. Ishikawa, Behavior of thermally induced nanobubbles during instantaneous particle heating by pulsed laser melting in liquid. Langmuir 37, 7167–7175 (2021). https://doi.org/10.1021/acs.langmuir.1c00736

    Article  CAS  PubMed  Google Scholar 

  23. Y. Ishikawa, N. Koshizaki, A. Pyatenko, Submicrometer-sized spherical iron oxide particles fabricated by pulsed laser melting in liquid. Electr. Commun. Jpn. 99, 37–42 (2016). https://doi.org/10.1002/ecj.11898

    Article  Google Scholar 

  24. K. Suehara, R. Takai, Y. Ishikawa, N. Koshizaki, K. Omura, H. Nagata, Y. Yamauchi, Reduction mechanism of transition metal oxide particles in thermally induced nanobubbles by pulsed laser melting in ethanol. ChemPhysChem 22, 675–683 (2021). https://doi.org/10.1002/cphc.202001000

    Article  CAS  PubMed  Google Scholar 

  25. M. Sieradzka, P. Rajca, M. Zajemska, A. Mlonka-Mędrala, A. Magdziarz, Prediction of gaseous products from refuse derived fuel pyrolysis using chemical modelling software - Ansys Chemkin-Pro J. Clean. Prod. 248 (2020) 119277. https://doi.org/10.1016/j.jclepro.2019.119277

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Koshizaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koshizaki, N., Ishikawa, Y. (2022). Formation Mechanism of Spherical Submicrometer Particles by Pulsed Laser Melting in Liquid. In: Ishikawa, Y., et al. High-Energy Chemistry and Processing in Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-16-7798-4_7

Download citation

Publish with us

Policies and ethics

Navigation