Behavior of Fukushima-Derived Radiocesium in the Soil–Water Environment: Review

  • Chapter
  • First Online:
Behavior of Radionuclides in the Environment III

Abstract

The chapter reviews the studies of the Fukushima-derived radiocesium behavior in the soil–water environment. Quantitative characteristics of radiocesium solid–liquid distribution (apparent and exchangeable distribution coefficients) and radiocesium wash-off from contaminated catchments (dissolved and particulate wash-off ratios) were obtained on the basis of field research and monitoring data. A conceptual model accounting for transformation of Fukushima-derived radiocesium chemical forms in soils and sediments is outlined, and key kinetic and equilibrium parameters of this model were estimated for geoclimatic conditions of Fukushima. Fukushima-derived radiocesium was found to be strongly bound by soil and sediment particles. Radiocesium apparent distribution coefficient Kd in Fukushima Rivers is much higher (at least by an order of magnitude) than that in rivers of the Chernobyl area, which is most likely due to two reasons: high binding ability of soils and sediments in Fukushima-contaminated areas, and the presence of water-insoluble hot glassy microparticles (CsMPs) in the Fukushima accidental fallout. Despite radiocesium in closed and semi-closed ponds being relatively persistent, a decline in both particulate and dissolved 137Cs activity concentrations was revealed. The reduction rate of the particulate 137Cs activity concentrations was much higher than that for dissolved 137Cs. As a result, the apparent distribution coefficient Kd(137Cs) in the sediment–water system decreased with the rate constant 0.12–0.18 yr.−1. Assuming that the decrease in Kd is associated with decomposition of glassy Cs-rich microparticles, the timescale of 137Cs leaching from them in the ponds studied was estimated to be 5–8 years. The obtained estimates are consistent with the findings of recent laboratory experiments. The processes of wash-off, river transport, and radionuclide vertical migration in catchment soils were considered in an integrated way using the semi-empirical diffusional model. This approach enables description of changes in the particulate and dissolved 137Cs wash-off ratios using only two physically meaningful parameters Deffthe 137Cs effective dispersion coefficient in the topsoil layer—and Kd—the 137Cs apparent distribution coefficient. Particulate 137Cs wash-off ratios from the catchments of the Fukushima area display only minor differences compared to those in the Chernobyl area, being at the lower limit of the Chernobyl values. Somewhat lower values of Np(137Cs) in the Fukushima area are explained by higher values of the effective dispersion coefficient Deff(137Cs) in typical Fukushima soils. Dissolved 137Cs wash-off ratios for Fukushima catchments are at least an order of magnitude lower than those for Chernobyl, mainly due to an order of magnitude difference in the 137Cs distribution coefficients for the Fukushima and Chernobyl Rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe Y, Iizawa Y, Terada Y, Adachi K, Igarashi Y, Nakai I (2015) Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Anal Chem 88:8521–8525

    Google Scholar 

  • Adachi K, Ka**o M, Zaizen Y, Igarashi Y (2013) Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci Rep 3:2554

    Google Scholar 

  • Ahuja LR, Sharpley AN, Yamamoto M, Menzel RG (1981) The depth of rainfall-runoff-soil interaction as determined by 32P. Water Resource Res 17:969–974

    Google Scholar 

  • Antsiferov SM, Kosyan RD (1986) Suspended material in the upper part of the continental shelf. Nauka, Moscow, p 224. (in Russian)

    Google Scholar 

  • Beresford N, Fesenko S, Konoplev A, Skuterud L, Smith JT, Voigt G (2016) Thirty years after the Chernobyl accident: what lessons have we learnt? J Environ Radioact 157:77–89

    CAS  Google Scholar 

  • Bobovnikova TI, Avramenko AS, Makhon’ko KP, Dibtseva AA, Volokitin AA, Chumichev VB (1977) Strontium-90 concentration in surface waters on the territory of the USSR. Meteorologia i Gidrologia No 9:56–61. (In Russian)

    Google Scholar 

  • Borzilov VA, Konoplev AV, Revina SK, Bobovnikova TI, Lyutik PM, Shveikin YV, Shcherbak AV (1988) An experimental study of the washout of radionuclides fallen on soil in consequence of the Chernobyl failure. Soviet Meteorol Hydrol. 11:27–33

    Google Scholar 

  • Borzilov VA, Sedunov YS, Novitskii MA, Vozzhennikov OI, Konoplev AV, Dragolyubova IV (1989) Physico-mathematical modeling of washout of long-lived radionuclides from drainage basins in the 30-km zone around the Chernobyl nuclear Power Station. Soviet Meteorol Hydrol 1:1–8

    Google Scholar 

  • Borzilov VA, Novitsky MA, Konoplev AV, Vozzhennikov OI, Gerasimenko AC (1993) A model for prediction and assessment of surface water contamination in emergency situations and methodology of determining its parameters. Rad Prot Dosim 50(2–4):349–351

    CAS  Google Scholar 

  • Bossew P, Kirchner G (2004) Modelling the vertical distribution of radionuclides in soil. Part 1: the convection-dispersion equation revisited. J Environ Radioact 73:127–150

    CAS  Google Scholar 

  • Bulgakov AA, Konoplev AV (2002) Modelling of 137Cs vertical soil transfer by a tree root system. Radiation biology. Radioecology 42(5): 556–560 (In Russian)

  • Bulgakov AA, Konoplev AV, Popov VE, Bobovnikova TI, Siverina AA, Shkuratova IG (1991a) Mechanisms of vertical migration of long-lived radionuclides in soils within 30 kilometers of the Chernobyl nuclear power station. Soviet Soil Sci 23:46–51

    Google Scholar 

  • Bulgakov AA, Konoplev AV, Popov VE, Scherbak AV (1991b) Removal of long-lived radionuclides from soil by surface runoff near the Chernobyl nuclear power station. Soviet Soil Sci 23:124–131

    Google Scholar 

  • Bulgakov AA, Konoplev AV, Shkuratova IG (2000) Distribution of 137Cs in the topmost soil layer within a 30-km zone around the Chernobyl nuclear power plant. Pochvovedenie 9:1149–1152. (In Russian)

    Google Scholar 

  • Chaisan K, Smith JT, Bossew P, Kirchner G, Laptev GV (2013) Worldwide isotope ratios of the Fukushima release and early-phase external dose reconstruction. Sci Rep 3:2520

    Google Scholar 

  • Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol 48:1129–1134

    CAS  Google Scholar 

  • Comans RNJ, Middelburg JJ, Zonderhuis J, Woittiez JRW, De Lange GJ, Das HA, Van der Weijden CH (1989) Mobilization of radiocaesium in pore water of lake sediments. Nature 339:367–369

    CAS  Google Scholar 

  • Comans RNG, Hilton J, Voitsekhovich O, Laptev G, Popov V, Madruga MJ, Bulgakov A, Smith JT, Movchan N, Konoplev A (1998) A comparative study of radiocesium mobility measurements in soils and sediments from the catchment of a small upland oligotrophic lake (Devoke water, UK). Water Res 32(9):2846–2855

    CAS  Google Scholar 

  • Cremers A, Elsen A, De Preter P, Maes A (1988) Quantitative analysis of radiocesium retention in soils. Nature 335:247–249

    CAS  Google Scholar 

  • De Preter P (1990) Radiocaesium retention in aquatic, terrestrial and urban environment: a quantitative and unifying analysis. Ph.D. Thesis. K.U. Leuven, Belgium, 93 p

    Google Scholar 

  • Donigian AS, Jr, Beyerlein DC, Davis HH, Crawford NH (1977) Agricultural runoff management (ARM) model, version II: refinement and testing. EPA 600/3-77-098, environ. Res. Lab., US EPA, Athens, GA, U.S. government printing office, Washington, DC

    Google Scholar 

  • Evrard O, Chartin C, Onda Y, Lepage H, Cerdan O, Lefevre I, Ayrault S (2014) Renewed soil erosion and remobilization of radioactive sediment in Fukushima coastal rivers after the 2013 typhoons. Sci Rep 4:4574

    Google Scholar 

  • Evrard O, Laceby JP, Lepage H, Onda Y, Cerdan O, Ayrault S (2015) Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima nuclear power plant accident: a review. J Environ Radioact 148:92–110

    CAS  Google Scholar 

  • French-German Initiative [FGI] (2006) The French-German Initiative for Chernobyl. Program 2: Study of the radioecological consequences. GRS/IRSN: 109 p

    Google Scholar 

  • Fukushima T, Arai H (2014) Radiocesium contamination of lake sediments and fish following the Fukushima nuclear accident and their partition coefficient. Inland Waters 4:204–214

    CAS  Google Scholar 

  • Funaki H, Sakuma K, Nakanishi T, Yoshimura K, Katengeza EW (2020) Reservoir sediments as a long-term source of dissolved radiocesium in water system: a mass balance case study of an artificial reservoir in Fukushima, Japan. Sci Total Environ 743:140668

    CAS  Google Scholar 

  • Garcia-Sanchez L (2008) Watershed wash-off of atmospherically deposited radionuclides: review of the fluxes and their evolution with time. J Environ Radioact 99:563–573

    CAS  Google Scholar 

  • Garcia-Sanchez L, Konoplev AV (2009) Watershed wash-off of atmospherically deposited radionuclides: a review of normalized entrainment coefficients. J Environ Radioact 100:774–778

    CAS  Google Scholar 

  • Garcia-Sanchez L, Konoplev A, Bulgakov A (2005) Radionuclide entrainment coefficients by wash-off derived from plot experiments near Chernobyl. Radioprotection 40(C1):S519–S524

    Google Scholar 

  • Hilton J (1997) Aquatic radioecology post Chernobyl – a review of the past and look to the future. In: Desmet G, Blust RJ, Comans RNJ, Fernandez JA, Hilton J, De Bettencourt A (eds) Freshwater and Estuarine Radioecology. Elsevier. 47–74

    Google Scholar 

  • Hirose K (2012) 2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results. J Environ Radioact 111:13–17

    CAS  Google Scholar 

  • Hirose K, Aoyama M, Sugimura Y (1990) Plutonium and cesium isotopes in river waters in Japan. J Radioanal Nucl Chem 141(1):191–202

    CAS  Google Scholar 

  • Igarashi Y, Kogure T, Kurihara Y, Miura H, Okumura T, Satou Y, Takahashi Y, Yamaguchi N (2019) A review of Cs-bearing microparticles in the environment emitted by the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 205-206:101–118

    CAS  Google Scholar 

  • Ikehara R, Suetake M, Komiya T, Furuki G, Ochiai A, Yamasaki S, Bower WR, Law GTW, Ohnuki T, Grambow B, Ewing RC, Utsunomiya S (2018) Novel method of quantifying radioactive cesium-rich microparticles (CsMP) in the environment from the Fukushima Daiichi nuclear power plant. Environ Sci Technol 52:6390–6398

    CAS  Google Scholar 

  • Ikehara R, Morooka K, Suetake M, Komiya T, Kurihara E, Takehara M, Takami R, Kino C, Horie K, Takehara M, Yamasaki S, Ohnuki T, Law GTW, Bower W, Grambow B, Ewing RC, Utsunomiya S (2020) Abundance and distribution of radioactive cesium-rich microparticles released from the Fukushima Daiichi nuclear power plant into the environment. Chemosphere 241:125019

    CAS  Google Scholar 

  • International Atomic Energy Agency [IAEA] (2006) Applicability of Monitored Natural Attenuation at Radioactively Contaminated Sites. Technical Reports Series No. 445. Vienna: 105 p

    Google Scholar 

  • International Atomic Energy Agency [IAEA] (2010). Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical reports series No. 472. Vienna: 194 p

    Google Scholar 

  • Ivanov YA, Lewyckyj N, Levchuk SE, Prister BS, Firsakova SK, Arkhipov NP, Kruglov SV, Alexakhin RM, Sandalls J, Askbrant S (1997) Migration of 137Cs and 90Sr from Chernobyl fallout in Ukrainian, Belarussian and Russian soils. J Environ Radioact 35:1–21

    CAS  Google Scholar 

  • Iwagami S, Onda Y, Tsujimura M, Abe Y (2017) Contribution of radioactive 137Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction from a headwater catchment in Fukushima after the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 166:466–474

    CAS  Google Scholar 

  • Kaneyasu N, Ohashi H, Suzuki F, Okuda T, Ikemori F (2012) Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident. Environ Sci Technol 46:5720–5726

    CAS  Google Scholar 

  • Kato H, Onda Y, Teramage M (2012) Depth distribution of 137Cs, 134Cs and 131I in soil profile after Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 111:59–64

    CAS  Google Scholar 

  • Knisel WG (ed) (1980) CREAMS: a field-scale model for chemicals runoff, and erosion from agricultural management systems. US DA Conservation Research Report No 26:643 p

    Google Scholar 

  • Konoplev AV (2015) Distribution of radiocesium of accidental origin between the suspended alluvium and solution in rivers: comparison of Fukushima and Chernobyl. Radiochemistry 57(5):552–556

    CAS  Google Scholar 

  • Konoplev AV (2016) Comparative analysis of radioactive cesium wash-off from contaminated catchment areas after accidents at the Fukushima Dai-ichi and Chernobyl nuclear power plants. Geochem Int 54(6):522–528

    CAS  Google Scholar 

  • Konoplev A (2020) Mobility and bioavailability of the Chernobyl-derived radionuclides in soil-water environment: review. In: Konoplev A, Kato K, Kalmykov S (eds) Behavior of radionuclides in the environment II: Chernobyl. Tokyo, Springer Nature, pp 157–193

    Google Scholar 

  • Konoplev AV, Bobovnikova TI (1991). Comparative analysis of chemical forms of long-lived radionuclides and their migration and transformation in the environment following the Kyshtym and Chernobyl accidents. Proceedings of seminar on comparative assessment of the environmental impact of radionuclides released during three major nuclear accidents: Kyshtym, Windscale, Chernobyl. Luxembourg, 1-5 October 1990, 1, 371-396

    Google Scholar 

  • Konoplev AV, Bulgakov AA (1996) Modelling the transformation processes of Chernobyl origin Cs-137 and Sr-90 speciation in soil and bottom sediments. In: environmental impact of radioactive releases. Proceedings of the international symposium Vienna, may 1995. IAEA, 311–324

    Google Scholar 

  • Konoplev AV, Bulgakov AA (2000) 90Sr and 137Cs exchangeable distribution coefficient in soil-water systems. Atomic Energy 88(2):158–163

    CAS  Google Scholar 

  • Konoplev AV, Golubenkov AV (1991) Modeling of the vertical radionuclide migration in soil (as a result of a nuclear accident). Meteorol Gidrol. 10:62–68. (In Russian)

    Google Scholar 

  • Konoplev AV, Konopleva IV (1999) Determination of radiocesium reversible selective sorption characteristics by soils and sediments. Geochem Int 37(2):207–214

    Google Scholar 

  • Konoplev AV, Borzilov VA, Bobovnikova TI, Virchenko EP, Popov VE, Kutnyakov IV, Chumichev VB (1988) Distribution of radionuclides in the soil-water system fallen out in consequence of the Chernobyl failure. Russ Meteorol Hydrol 12:63–74

    Google Scholar 

  • Konoplev AV, Kopylova LP, Bobovnikova TI, Bulgakov AA, Siverina AA (1992a) 90Sr and 137Cs distribution in the bottom sediments-water system of water bodies of the Chernobyl NPP exclusion zone. Soviet Meteorol. Hydrol. 1:35–42

    Google Scholar 

  • Konoplev AV, Bulgakov AA, Popov VE, Bobovnikova TI (1992b) Behaviour of long-lived radionuclides in a soil-water system. Analyst 117:1041–1047

    CAS  Google Scholar 

  • Konoplev AV, Bulgakov AA, Zhirnov VG, Bobovnikova TI, Kutnyakov IV, Siverina FA, Popov VE, Virchenko EP (1998) Study of the 137Cs and 90Sr behavior in lakes Svyatoe and Kozhanovskoe, Bryansk region Russian. Meteorol Hydrol 11:45–53

    Google Scholar 

  • Konoplev AV, Kaminski S, Klemt E, Konopleva I, Miller R, Zibold G (2002a) Comparative study of 137Cs partitioning between solid and liquid phases in lakes Constance, Lugano and Vorsee. J Environ Radioact 58:1–11

    CAS  Google Scholar 

  • Konoplev AV, Deville-Cavelin G, Voitsekhovich O, Zhukova OM (2002b) Transfer of Chernobyl 137Cs and 90Sr by surface run-off. Radioprotection 37(C1):315–318

    Google Scholar 

  • Konoplev A, Golosov V, Laptev G, Nanba K, Onda Y, Takase T, Wakiyama Y, Yoshimura K (2016a) Behavior of accidentally released radiocesium in soil-water environment: looking at Fukushima from a Chernobyl perspective. J Environ Radioact 151:568–578

    CAS  Google Scholar 

  • Konoplev AV, Golosov VN, Yoschenko VI, Nanba K, Onda Y, Takase T, Wakiyama Y (2016b) Vertical distribution of radiocesium in soils of the area affected by the Fukushima Dai-ichi nuclear power plant accident. Eurasian Soil Sci 49(5):570–580

    CAS  Google Scholar 

  • Konoplev A, Golosov V, Wakiyama Y, Takase T, Yoschenko V, Yoshihara T, Parenyuk O, Cresswell A, Ivanov M, Carradine M, Nanba K, Onda Y (2018a) Natural attenuation of Fukushima-derived radiocesium in soils due to its vertical and lateral migration. J Environ Radioact 186:23–33

    CAS  Google Scholar 

  • Konoplev A, Wakiyama Y, Wada T, Golosov V, Nanba K, Takase T (2018b) Radiocesium in ponds in the near zone of Fukushima Dai-ichi NPP. Water Resour 45(4):589–597

    CAS  Google Scholar 

  • Konoplev A, Kanivets V, Laptev G, Voitsekhovich O, Zhukova O, Germenchuk M (2020) Long-term dynamics of the Chernobyl-derived radionuclides in rivers and lakes. In: Konoplev A, Kato K, Kalmykov S (eds) Behavior of radionuclides in the environment II: Chernobyl. Springer, Tokyo, pp 323–348

    Google Scholar 

  • Konoplev A, Wakiyama Y, Wada T, Udy C, Kanivets V, Ivanov V, Komissarov M, Goto A, Nanba K (2021a) Radiocesium distribution and mid-term dynamics in the ponds of the Fukushima Dai-ichi nuclear power plant exclusion zone. Chemosphere 265:129058

    CAS  Google Scholar 

  • Konoplev A, Kanivets V, Zhukova O, Germenchuk M, Derkach G (2021b) Mid- to long- term radiocesium wash-off from contaminated catchments at Chernobyl and Fukushima. Water Res 188:116514. https://doi.org/10.1016/j.watres.2020.116514

    Article  CAS  Google Scholar 

  • Konshin O (1992) Mathematical model of 137Cs migration in soil: analysis of observations following the Chernobyl accident. Health Phys 63(3):301–306

    CAS  Google Scholar 

  • Laceby JP, Chartin C, Evrard O, Onda Y, Garcia-Sanchez L, Cerdan O (2016) Rainfall erosivity in catchments contaminated with fallout from the Fukushima Daiichi nuclear power plant accident. Hydrol Earth Syst Sci 20:2467–2482

    Google Scholar 

  • Makhon’ko KP, Avramenko AS, Bobovnikova TI, Chumichev VB (1977) Strontium-90 and Cesium-137 wash-off coefficient from soil of river basin. Meteorologia i Gidrologia 10:62–66. (In Russian)

    Google Scholar 

  • Malins A, Kurikami H, Nakama S, Saito T, Okumura M, Machida M, Kitamura A (2016) Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima. J Environ Radioact 151:38–49

    CAS  Google Scholar 

  • Mamikhin SV, Golosov VN, Paramonova TA, Shamshurina EN, Ivanov MM (2016) Vertical distribution of 137Cs in alluvial soils of the Lokna River floodplain (Tula oblast) long after the Chernobyl accident and its simulation. Eurasian Soil Sci 49(12):1432–1442

    CAS  Google Scholar 

  • Matsuda N, Mikami S, Shimoura S, Takahashi J, Nakano M, Shimada K, Uno K, Hagiwara S (2015) Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi nuclear power plant, Japan. J Environ Radioact 139:427–434

    CAS  Google Scholar 

  • Matsunaga T, Amano H, Yanase N (1991) Discharge of dissolved and particulate 137Cs in the Kuji River, Japan. Appl Geochem 6:159–167

    CAS  Google Scholar 

  • Ministry of Education, Culture, Sports, Science and Technology of Japan [MEXT] (2012) Results of the (i) Fifth Airborne Monitoring Survey and (ii) Airborne Monitoring Survey Outside 80 km from the Fukushima Dai-ichi NPP. Tokyo. http://radioactivity.nsr.go.jp/en/contents/6000/5790/24/203_092814e.pdf

  • Miura H, Kurihara Y, Sakaguchi A, Tanaka K, Yamaguchi N, Higaki S, Takahashi Y (2018) Discovery of radiocesium-bearing microparticles in river water and their influence on the solid-water distribution coefficient (Kd) of radiocesium in the Kuchibuto River in Fukushima. Geochem J 52:1–10

    Google Scholar 

  • Miura H, Kurihara Y, Yamamoto M, Sakaguchi A, Yamaguchi N, Sekizawa O, Nitta K, Higaki S, Tsumune D, Itai T, Takahashi Y (2020) Characterization of two types of cesium-bearing microparticles emitted from the Fukushima accident via multiple synchrotron radiation analyses. Sci Reports 10:11421

    CAS  Google Scholar 

  • Monte L, Brittain J, Hakanson L, Smith JT, Van der Perk M (2004) Review and assessment of models for predicting the migration of radionuclides from catchments. J Environ Radioact 75:83–103

    CAS  Google Scholar 

  • Nagao S, Kanamori M, Ochiai S, Tomihara S, Fukushi K, Yamamoto M (2013) Export of 134Cs and 137Cs in the Fukushima river systems at heavy rains by typhoon Roke in September 2011. Biogeosciences 10:6215–6223

    CAS  Google Scholar 

  • Nakanishi T, Sakuma K (2019) Trend of 137Cs concentration in river water in the medium term and future following the Fukushima nuclear accident. Chemosphere 215:272–279

    CAS  Google Scholar 

  • Nakao A, Ogasawara S, Sano O, Ito T, Yanai J (2014) Radiocesium sorption in relation to clay mineralogy of paddy soils in Fukushima. Japan Sci Total Environ 468–469:523–529

    Google Scholar 

  • Naulier M, Eyrolle-Boyer F, Boyer P, Metivier J-M, Onda Y (2017) Particulate organic matter in rivers of Fukushima: an unexpected carrier phase for radiocesium. Sci Total Environ 579:1560–1571

    CAS  Google Scholar 

  • Niimura N, Kikuchi K, Tuyen ND, Komatsuzaki M, Motohashi Y (2015) Physical properties, structure and shape of radioactive Cs from the Fukushima Daiichi nuclear power plant accident derived from soil, bamboo and shiitake mushroom measurements. J Environ Radioact 139:234–239

    CAS  Google Scholar 

  • Okumura T, Yamaguchi N, Dohi T, Iijima K, Kogure T (2019) Dissolution behavior of radiocesium-bearing microparticles released from the Fukushima nuclear plant. Sci Reports 9:3520

    Google Scholar 

  • Pisarev VV, Koloskov IA, Kuznetsova VM, Tsybizov IS (1972) Strontium-90 washout from soil by surface waters. Pochvovedenie 3:66–75. (In Russian)

    Google Scholar 

  • Prokhorov VM (1981) Migration of radioactive contaminants in soil. Energoizdat, Moscow, p 98. (In Russian)

    Google Scholar 

  • Rovinsky FY, Sinitsyna ZL (1979) Prediction of river water quality spring flood. Meteorologia i Gidrologia 6:74–77. (In Russian)

    Google Scholar 

  • Rovinsky FY, Sinitsyna ZL, Cherhanov YP (1976) About strontium-90 migration from soil with surface runoff. Pochvovedenie 8:52–55. (In Russian)

    Google Scholar 

  • Saito K, Tanihata I, Fujiwara M, Saito T, Shimoura S, Otsuka T, Onda Y, Hoshi M, Ikeuchi Y, Takahashi F, Kinouchi N, Saegusa J, Takemiya H, Shibata T (2015) Detailed deposition density maps constructed by large scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 139:308–319

    CAS  Google Scholar 

  • Satou Y, Sueki K, Sasa K, Yoshikawa H, Nakama S, Minowa H, Abe Y, Naklai I, Ono T, Adachi K, Igarashi Y (2018) Analysis of two forms of radioactive particles emitted during the early stages of the Fukushima Dai-ichi nuclear Power Station accident. Geochem J 52:137–143

    CAS  Google Scholar 

  • Smith JT, Hilton J, Comans RNJ (1995) Application of two simple models to the transport of 137Cs in an upland organic catchment. Sci Total Environ 168:57–61

    CAS  Google Scholar 

  • Smith JT, Belova NV, Bulgakov AA, Comans RNJ, Konoplev AV, Kudelsky AV, Madruga MJ, Voitsekhovich OV, Zibold G (2005) The “AQUASCOPE” simplified model for predicting 89,90Sr, and 134,137Cs in surface waters after a large-scale radioactive fallout. Health Phys 89(6):628–644

    CAS  Google Scholar 

  • Takahashi J, Tamura K, Suda T, Matsumura R, Onda Y (2015) Vertical distribution and temporal changes of 137Cs in soil profiles under various land uses after the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 139:351–361

    CAS  Google Scholar 

  • Takahashi Y, Fan Q, Suga H, Tanaka K, Sakaguchi A, Takeichi Y, Ono K, Mase K, Kato K, Kanivets V (2017) Comparison of solid-water partitions of radiocesium in river water in Fukushima and Chernobyl areas. Sci Rep 7:12407

    Google Scholar 

  • Takahashi Y, Sakaguchi A, Fan Q, Tanaka K, Miura H, Kurihara Y (2020) Difference in the solid-water distribution of radiocesium in rivers in Fukushima and Chernobyl. In: Kato K, Konoplev A, Kalmykov S (eds) Behavior of radionuclides in the environment I: function of particles in aquatic system. Springer Nature, Singapore, pp 115–150

    Google Scholar 

  • Taniguchi K, Onda Y, Smith HG, Blake W, Yoshimura K, Yamashiki Y, Kuramoto T, Saito K (2019) Transport and redistribution of radiocesium in Fukushima fallout through rivers. Environ Sci Technol 53:12339–12347

    CAS  Google Scholar 

  • Tsuji H, Yasutaka T, Kawabe Y, Onishi T, Komai T (2014) Distribution of dissolved and particulate radiocesium concentrations along rivers and the relations between radiocesium concentration and deposition after the nuclear power plant accident in Fukushima. Water Res 60:15–27

    CAS  Google Scholar 

  • Tsukada H, Nihira S, Watanabe T, Takeda S (2017) The 137Cs activity concentration of suspended and dissolved fractions in irrigation waters collected from the 80 km zone around TEPCO’s Fukushima Daichi nuclear Power Station. J Environ Radioact 178-179:354–359

    CAS  Google Scholar 

  • Ueda S, Hasegawa H, Kakiuchi H, Akata N, Ohtsuka Y, Hisamatsu S (2013) Fluvial discharges of radiocesium from watersheds contaminated by the Fukushima Dai-ichi nuclear Powerer plant accident. Japan J Environ Radioact 118:96–104

    CAS  Google Scholar 

  • Uematsu S, Smolders E, Sweek L, Wannijn J, Van Hees M, Vandenhove H (2015) Predicting radiocesium sorption characteristics with soil chemical properties for Japanese soils. Sci Total Environ 524-525:148–156

    CAS  Google Scholar 

  • Valcke E, Cremers A (1994) Sorption-desorption dynamics of radiocesium in organic matter soils. Sci Total Environ 157:275–283

    CAS  Google Scholar 

  • Van Genuchten MT, Wierenga PJ (1986) Solute dispersion coefficients and retardation factors. Methods of soil analysis. Part 1 physical and mineralogical methods, Madison, Wisconsin USA: 1025-1054

    Google Scholar 

  • Wada T, Konoplev A, Wakiyama Y, Watanabe K, Furuta Y, Morishita D, Kawata G, Nanba K (2019) Strong contrast of cesium radioactivity between marine and freshwater fish in Fukushima. J Environ Radioact 204:132–142

    CAS  Google Scholar 

  • Wakiyama Y, Konoplev A, Wada T, Takase T, Byrnes I, Carradine M, Nanba K (2017) Behavior of 137Cs in ponds in the vicinity of the Fukushima Dai-ichi nuclear power plant. J Environ Radioact 178-179:367–376

    CAS  Google Scholar 

  • Wakiyama Y, Konoplev A, Wada T, Takase T, Igarashi Y, Nanba K, Byrnes I (2019a) Temporal trends of 137Cs activity concentration in pond waters in the vicinity of Fukushima Dai-ichi nuclear power plant. Proc IAHS 381:101–106

    CAS  Google Scholar 

  • Wakiyama Y, Onda Y, Yoshimura K, Igarashi Y, Kato H (2019b) Land use types control solid wash-off rate and entrainment coefficient of Fukushima-derived 137Cs, and their time dependence. J Environ Radioact 210:105990

    CAS  Google Scholar 

  • Wauters J, Madruga MJ, Vidal M, Cremers A (1996) Solid phase speciation of radiocesium in bottom sediments. Sci Total Env 187:121–130

    CAS  Google Scholar 

  • Yamaguchi N, Tsukada H, Kohyama K, Takata Y, Takeda A, Isono S, Taniyama I (2017) Radiocesium interception potential of agricultural soils in Northeast Japan. Soil Sci Plant Nutr 63(2):119–126

    CAS  Google Scholar 

  • Yamashiki Y, Onda Y, Smith HG, Blake WH, Wakahara T, Igarashi Y, Matsuura Y, Yoshimura K (2014) Initial flux of sediment-associated radiocesium to the ocean from the largest river impacted by Fukushima daiichi nuclear power plant. Sci. Rep. 4:3714

    Google Scholar 

  • Yoshikawa N, Obara H, Ogasa M, Miyazu S, Harada N, Nonaka M (2014) 137Cs in irrigation water and its effect on paddy fields in Japan after the Fukushima nuclear accident. Sci Total Environ 481:252–259

    CAS  Google Scholar 

  • Yoshimura K, Onda Y, Sakaguchi A, Yamamoto M, Matsuura Y (2015a) An extensive study of the concentrations of particulate/dissolved radiocaesium derived from the Fukushima Dai-ichi nuclear power plant accident in various river systems and their relationship with catchment inventory. J Environ Radioact 139:370–378

    CAS  Google Scholar 

  • Yoshimura K, Onda Y, Kato H (2015b) Evaluation of radiocesium wash-off by soil erosion from various land uses using USLE plots. J Environ Radioact 139:362–369

    CAS  Google Scholar 

  • Yoshimura K, Onda Y, Wakahara T (2016) Time dependence of the 137Cs concentration in particles discharged from rice paddies to freshwater bodies after the Fukushima Daiichi NPP accident. Environ Sci Technol 50:4186–4193

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (B) (KAKENHI 18H03389).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Konoplev, A., Wakiyama, Y., Wada, T., Igarashi, Y., Kanivets, V., Nanba, K. (2022). Behavior of Fukushima-Derived Radiocesium in the Soil–Water Environment: Review. In: Nanba, K., Konoplev, A., Wada, T. (eds) Behavior of Radionuclides in the Environment III. Springer, Singapore. https://doi.org/10.1007/978-981-16-6799-2_4

Download citation

Publish with us

Policies and ethics

Navigation