Structural Neuroimaging: From Macroscopic to Microscopic Scales

  • Reference work entry
  • First Online:
Handbook of Neuroengineering
  • 303 Accesses

Abstract

This chapter discusses structural MRI (sMRI) techniques to image the brain anatomy, with a focus on diffusion MRI (dMRI). Conventional sMRI, including T1-, T2-, T2*-weighted MRI, gives rich contrasts to delineate the brain structures and provides important information about the structural volume, shape, and relaxometry. Compared to conventional relaxation-based contrast mechanisms, the dMRI technique offers unique contrasts based on translational molecular motions, which are restricted by microstructural barriers such as cell membranes and axons. We will describe the essential components of a dMRI pulse sequence, including the various diffusion encoding schemes and image acquisition techniques to achieve high-resolution dMRI. We will then introduce biophysical models that reconstruct the microstructural information (cell size, density, permeability, axon diameter, etc.), using dMRI signals acquired with different diffusion directions and weighting strength (q-space) and different diffusion times. In the end, a few exemplary clinical and preclinical applications of dMRI will be reviewed, and the current challenges and potential future directions will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

D :

diffusivity

K :

kurtosis

t d :

diffusion time

G :

diffusion gradient

r :

diffusion distance

b :

diffusion b-value

γ :

gyromagnetic ratio

S :

diffusion-weighted signal

S 0 :

non-diffusion-weighted signal

λ1, λ2, λ3:

first, second, and third eigenvalues

\( \overline{e_1},\overline{e_2},\overline{e_3} \) :

first, second, and third eigenvectors

ADC:

apparent diffusion coefficient

AD:

Alzheimer’s disease

CP:

cortical plate

DDE:

Double diffusion encoding

DEC:

direction-encoded color map

DKI:

Diffusion kurtosis imaging

dMRI:

Diffusion MRI

DSI:

diffusion spectrum imaging

DTI:

diffusion tensor imaging

DWIs:

Diffusion-weighted images

EPI:

Echo-planar imaging

FOV:

Field-of-view

FA:

fractional anisotropy

FOD:

fiber orientation distribution

HARDI:

High angular resolution diffusion imaging

IZ:

intermediate zone

MD/RD/AD:

mean/radial/axial diffusivities

NODDI:

Neurite orientation dispersion and density imaging

NE:

neuroepithelium

OGSE:

Oscillating gradient spin-echo

PGSE:

Pulsed gradient spin-echo

sMRI:

Structural magnetic resonance imaging

SMS:

Simultaneous multi-slice

SSFP:

Steady-state free precession

STEAM:

Stimulated Echo Acquisition Mode

TBSS:

tract-based spatial statistics

TDI:

Tract-density images

TE:

echo time

Reference

  1. Bottomley, P.A., Foster, T.H., Argersinger, R.E., Pfeifer, L.M.: A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med. Phys. 11(4), 425–448 (1984). https://doi.org/10.1118/1.595535

    Article  Google Scholar 

  2. Haacke, E.M., Xu, Y., Cheng, Y.-C.N., Reichenbach, J.R.: Susceptibility weighted imaging (SWI). Magn. Reson. Med. 52(3), 612–618 (2004). https://doi.org/10.1002/mrm.20198

    Article  Google Scholar 

  3. Chavhan, G.B., Babyn, P.S., Thomas, B., Shroff, M.M., Haacke, E.M.: Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics. 29(5), 1433–1449 (2009). https://doi.org/10.1148/rg.295095034

    Article  Google Scholar 

  4. Haacke, E.M., Makki, M., Ge, Y.L., Maheshwari, M., Sehgal, V., Hu, J.N., Selvan, M., Wu, Z., Latif, Z., Xuan, Y., Khan, O., Garbern, J., Grossman, R.I.: Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. J. Magn. Reson. Imaging. 29(3), 537–544 (2009). https://doi.org/10.1002/jmri.21676

    Article  Google Scholar 

  5. Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N., Friston, K.J., Frackowiak, R.S.: A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage. 14(1 Pt 1), 21–36 (2001). https://doi.org/10.1006/nimg.2001.0786

    Article  Google Scholar 

  6. Mori, S., Oishi, K., Faria, A.V., Miller, M.I.: Atlas-based neuroinformatics via MRI: harnessing information from past clinical cases and quantitative image analysis for patient care. Annu. Rev. Biomed. Eng. 15, 71–92 (2013). https://doi.org/10.1146/annurev-bioeng-071812-152335

    Article  Google Scholar 

  7. Oishi, K., Faria, A., Jiang, H., Li, X., Akhter, K., Zhang, J., Hsu, J.T., Miller, M.I., van Zijl, P.C.M., Albert, M., Lyketsos, C.G., Woods, R., Toga, A.W., Pike, G.B., Rosa-Neto, P., Evans, A., Mazziotta, J., Mori, S.: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric map**: application to normal elderly and Alzheimer’s disease participants. NeuroImage. 46(2), 486–499 (2009)

    Article  Google Scholar 

  8. Brant-Zawadzki, M., Gillan, G.D., Nitz, W.R.: MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence--initial experience in the brain. Radiology. 182(3), 769–775 (1992). https://doi.org/10.1148/radiology.182.3.1535892

    Article  Google Scholar 

  9. Mugler 3rd, J.P.: Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging: JMRI. 39(4), 745–767 (2014). https://doi.org/10.1002/jmri.24542

    Article  Google Scholar 

  10. Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002). https://doi.org/10.1002/mrm.10171

    Article  Google Scholar 

  11. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  12. Breuer, F.A., Blaimer, M., Heidemann, R.M., Mueller, M.F., Griswold, M.A., Jakob, P.M.: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn. Reson. Med. 53(3), 684–691 (2005). https://doi.org/10.1002/mrm.20401

    Article  Google Scholar 

  13. Setsompop, K., Gagoski, B.A., Polimeni, J.R., Witzel, T., Wedeen, V.J., Wald, L.L.: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn. Reson. Med. 67(5), 1210–1224 (2012). https://doi.org/10.1002/mrm.23097

    Article  Google Scholar 

  14. Gamper, U., Boesiger, P., Kozerke, S.: Compressed sensing in dynamic MRI. Magn. Reson. Med. 59(2), 365–373 (2008). https://doi.org/10.1002/mrm.21477

    Article  Google Scholar 

  15. Wang, S.S., Su, Z.H., Ying, L., Peng, X., Zhu, S., Liang, F., Feng, D.G., Liang, D.: Accelerating magnetic resonance imaging via deep learning. I S Biomed Imaging, 514–517 (2016). https://doi.org/10.1109/Isbi.2016.7493320

  16. Le Bihan, D., Iima, M.: Diffusion magnetic resonance imaging: what water tells us about biological tissues. PLoS Biol. 13(7), ARTN e1002203 (2015). https://doi.org/10.1371/journal.pbio.1002203

    Article  Google Scholar 

  17. Callaghan, P.T.: Physics of diffusion. In: Johns, D.K. (ed.) Diffusion MRI: Theory, Methods, and Applications. Oxford University Press, Cardiff (2010)

    Google Scholar 

  18. Beaulieu, C.: What makes diffusion anisotropic in the nervous system? In: Jones, D.K. (ed.) Diffusion MRI: Theory, Methods, and Applications, pp. 92–109. Oxford University Press, New York (2011)

    Google Scholar 

  19. Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965). https://doi.org/10.1063/1.1695690

    Article  Google Scholar 

  20. Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. Ser. B. 103(3), 247–254 (1994)

    Article  Google Scholar 

  21. Mattiello, J., Basser, P.J., Lebihan, D.: Analytical expressions for the B-matrix in NMR diffusion imaging and spectroscopy. J. Magn. Reson. Ser. A. 108(2), 131–141 (1994). https://doi.org/10.1006/jmra.1994.1103

    Article  Google Scholar 

  22. Mattiello, J., Basser, P.J., LeBihan, D.: The b matrix in diffusion tensor echo-planar imaging. Magn. Reson. Med. 37(2), 292–300 (1997). https://doi.org/10.1002/mrm.1910370226

    Article  Google Scholar 

  23. Reese, T.G., Heid, O., Weisskoff, R.M., Wedeen, V.J.: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn. Reson. Med. 49(1), 177–182 (2003). https://doi.org/10.1002/mrm.10308

    Article  Google Scholar 

  24. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994). https://doi.org/10.1016/S0006-3495(94)80775-1

    Article  Google Scholar 

  25. Ahlgren, A., Knutsson, L., Wirestam, R., Nilsson, M., Stahlberg, F., Topgaard, D., Lasic, S.: Quantification of microcirculatory parameters by joint analysis of flow-compensated and non-flow-compensated intravoxel incoherent motion (IVIM) data. NMR Biomed. 29(5), 640–649 (2016). https://doi.org/10.1002/nbm.3505

    Article  Google Scholar 

  26. Merboldt, K.D., Hanicke, W., Frahm, J.: Self-diffusion NMR imaging using stimulated echoes. J. Magn. Reson. 64(3), 479–486 (1985). https://doi.org/10.1016/0022-2364(85)90111-8

    Article  Google Scholar 

  27. Merboldt, K.D., Hanicke, W., Frahm, J.: Diffusion imaging using stimulated echoes. Magn. Reson. Med. 19(2), 233–239 (1991). https://doi.org/10.1002/mrm.1910190208

    Article  Google Scholar 

  28. Schachter, M., Does, M.D., Anderson, A.W., Gore, J.C.: Measurements of restricted diffusion using an oscillating gradient spin-echo sequence. J. Magn. Reson. 147(2), 232–237 (2000). https://doi.org/10.1006/jmre.2000.2203

    Article  Google Scholar 

  29. Does, M.D., Parsons, E.C., Gore, J.C.: Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain. Magn. Reson. Med. 49(2), 206–215 (2003). https://doi.org/10.1002/mrm.10385

    Article  Google Scholar 

  30. Shemesh, N., Jespersen, S.N., Alexander, D.C., Cohen, Y., Drobnjak, I., Dyrby, T.B., Finsterbusch, J., Koch, M.A., Kuder, T., Laun, F., Lawrenz, M., Lundell, H., Mitra, P.P., Nilsson, M., Ozarslan, E., Topgaard, D., Westin, C.F.: Conventions and nomenclature for double diffusion encoding NMR and MRI. Magn. Reson. Med. 75(1), 82–87 (2016). https://doi.org/10.1002/mrm.25901

    Article  Google Scholar 

  31. Ozarslan, E., Basser, P.J.: Microscopic anisotropy revealed by NMR double pulsed field gradient experiments with arbitrary timing parameters. J. Chem. Phys. 128(15), Artn154511 (2008). https://doi.org/10.1063/1.2905765

    Article  Google Scholar 

  32. Topgaard, D.: Multidimensional diffusion MRI. J. Magn. Reson. 275, 98–113 (2017). https://doi.org/10.1016/j.jmr.2016.12.007

    Article  Google Scholar 

  33. Westin, C.F., Knutsson, H., Pasternak, O., Szczepankiewicz, F., Ozarslan, E., van Westen, D., Mattisson, C., Bogren, M., O’Donnell, L.J., Kubicki, M., Topgaard, D., Nilsson, M.: Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. NeuroImage. 135, 345–362 (2016). https://doi.org/10.1016/j.neuroimage.2016.02.039

    Article  Google Scholar 

  34. Aliotta, E., Wu, H.H., Ennis, D.B.: Convex Optimized Diffusion Encoding (CODE) gradient waveforms for minimum echo time and bulk motion-compensated diffusion-weighted MRI. Magn. Reson. Med. 77(2), 717–729 (2017). https://doi.org/10.1002/mrm.26166

    Article  Google Scholar 

  35. Drobnjak, I., Siow, B., Alexander, D.C.: Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted MR. J. Magn. Reson. 206(1), 41–51 (2010). https://doi.org/10.1016/j.jmr.2010.05.017

    Article  Google Scholar 

  36. Wu, D., Zhang, J.: Evidence of the diffusion time dependence of intravoxel incoherent motion in the brain. Magn. Reson. Med. 82(6), 2225–2235 (2019). https://doi.org/10.1002/mrm.27879

    Article  Google Scholar 

  37. Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J.M., Kiefer, B., Haase, A.: Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002). https://doi.org/10.1002/mrm.10171

    Article  Google Scholar 

  38. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: Sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999). https://doi.org/10.1002/(Sici)1522-2594(199911)42:5<952::Aid-Mrm16>3.3.Co;2-J

    Article  Google Scholar 

  39. Bammer, R., Holdsworth, S.J., Aksoy, M., Skare, S.T.: Phase errors in diffusion-weighted imaging. In: Jones, D.K. (ed.) Diffusion MRI: Theory, Methods, and Applications, pp. 218–249. Oxford University Press, New York (2011)

    Google Scholar 

  40. Jeong, H.K., Gore, J.C., Anderson, A.W.: High-resolution human diffusion tensor imaging using 2-D navigated multishot SENSE EPI at 7 T. Magn. Reson. Med. 69(3), 793–802 (2013). https://doi.org/10.1002/mrm.24320

    Article  Google Scholar 

  41. Chen, N.K., Guidon, A., Chang, H.C., Song, A.W.: A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE). NeuroImage. 72, 41–47 (2013). https://doi.org/10.1016/j.neuroimage.2013.01.038

    Article  Google Scholar 

  42. Mani, M., Jacob, M., Kelley, D., Magnotta, V.: Multi-shot sensitivity-encoded diffusion data recovery using structured low-rank matrix completion (MUSSELS). Magn. Reson. Med. 78(2), 494–507 (2017). https://doi.org/10.1002/mrm.26382

    Article  Google Scholar 

  43. Liu, C.L., Bammer, R., Kim, D.H., Moseley, M.E.: Self-navigated interleaved spiral (SNAILS): application to high-resolution diffusion tensor imaging. Magn. Reson. Med. 52(6), 1388–1396 (2004). https://doi.org/10.1002/mrm.20289

    Article  Google Scholar 

  44. Skare, S., Newbould, R.D., Clayton, D.B., Bammer, R.: Propeller EPI in the other direction. Magn. Reson. Med. 55(6), 1298–1307 (2006). https://doi.org/10.1002/mrm.20890

    Article  Google Scholar 

  45. Setsompop, K., Cohen-Adad, J., Gagoski, B.A., Raij, T., Yendiki, A., Keil, B., Wedeen, V.J., Wald, L.L.: Improving diffusion MRI using simultaneous multi-slice echo planar imaging. NeuroImage. 63(1), 569–580 (2012). https://doi.org/10.1016/j.neuroimage.2012.06.033

    Article  Google Scholar 

  46. Setsompop, K., Fan, Q.Y., Stockmann, J., Bilgic, B., Huang, S., Cauley, S.F., Nummenmaa, A., Wang, F.Y.X., Rathi, Y., Witzel, T., Wald, L.L.: High-resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: simultaneous multislice (gSlider-SMS). Magn. Reson. Med. 79(1), 141–151 (2018). https://doi.org/10.1002/mrm.26653

    Article  Google Scholar 

  47. Miller, K.L., Stagg, C.J., Douaud, G., Jbabdi, S., Smith, S.M., Behrens, T.E.J., Jenkinson, M., Chance, S.A., Esiri, M.M., Voets, N.L., Jenkinson, N., Aziz, T.Z., Turner, M.R., Johansen-Berg, H., McNab, J.A.: Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner. NeuroImage. 57(1), 167–181 (2011). https://doi.org/10.1016/j.neuroimage.2011.03.070

    Article  Google Scholar 

  48. Wu, W.C., Poser, B.A., Douaud, G., Frost, R., In, M.H., Speck, O., Koopmans, P.J., Miller, K.L.: High-resolution diffusion MRI at 7T using a three-dimensional multi-slab acquisition. NeuroImage. 143, 1–14 (2016). https://doi.org/10.1016/j.neuroimage.2016.08.054

    Article  Google Scholar 

  49. Aggarwal, M., Mori, S., Shimogori, T., Blackshaw, S., Zhang, J.Y.: Three-dimensional diffusion tensor microimaging for anatomical characterization of the mouse brain. Magn. Reson. Med. 64(1), 249–261 (2010). https://doi.org/10.1002/mrm.22426

    Article  Google Scholar 

  50. Wu, D., Xu, J., McMahon, M.T., van Zijl, P.C., Mori, S., Northington, F.J., Zhang, J.: In vivo high-resolution diffusion tensor imaging of the mouse brain. NeuroImage. 83, 18–26 (2013). https://doi.org/10.1016/j.neuroimage.2013.06.012

    Article  Google Scholar 

  51. Jeong, E.K., Kim, S.E., Guo, J., Kholmovski, E.G., Parker, D.L.: High-resolution DTI with 2D interleaved multislice reduced FOV single-shot diffusion-weighted EPI (2D ss-rFOV-DWEPI). Magn. Reson. Med. 54(6), 1575–1579 (2005). https://doi.org/10.1002/mrm.20711

    Article  Google Scholar 

  52. Wu, D., Reisinger, D., Xu, J., Fatemi, S.A., van Zijl, P.C., Mori, S., Zhang, J.: Localized diffusion magnetic resonance micro-imaging of the live mouse brain. NeuroImage. 91, 12–20 (2014). https://doi.org/10.1016/j.neuroimage.2014.01.014

    Article  Google Scholar 

  53. Liu, C., Bammer, R., Kim, D.H., Moseley, M.E.: Self-navigated interleaved spiral (SNAILS): application to high-resolution diffusion tensor imaging. Magn. Reson. Med. 52(6), 1388–1396 (2004). https://doi.org/10.1002/mrm.20288

    Article  Google Scholar 

  54. Callaghan, P.T., Macgowan, D., Packer, K.J., Zelaya, F.O.: High-resolution Q-space imaging in porous structures. J. Magn. Reson. 90(1), 177–182 (1990). https://doi.org/10.1016/0022-2364(90)90376-K

    Article  Google Scholar 

  55. Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M.: Map** complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005). https://doi.org/10.1002/mrm.20642

    Article  Google Scholar 

  56. Tuch, D.S.: Q-Ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004). https://doi.org/10.1002/Mrm.20279

    Article  Google Scholar 

  57. Cohen, Y., Assaf, Y.: Extracting geometric properties of white matter with q-space diffusion MRI (QSI). In: Jones, D.K. (ed.) Diffusion MRI: Theory, Methods, and Applications, pp. 125–151. Oxford University Press, New York (2011)

    Google Scholar 

  58. Sundgren, P.C., Dong, Q., Gomez-Hassan, D., Mukherji, S.K., Maly, P., Welsh, R.: Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology. 46(5), 339–350 (2004). https://doi.org/10.1007/s00234-003-1114-x

    Article  Google Scholar 

  59. Basser, P.J., Jones, D.K.: Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed. 15(7-8), 456–467 (2002). https://doi.org/10.1002/nbm.783

    Article  Google Scholar 

  60. Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45(2), 265–269 (1999)

    Article  Google Scholar 

  61. Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. U. S. A. 96(18), 10422–10427 (1999). https://doi.org/10.1073/pnas.96.18.10422

    Article  Google Scholar 

  62. Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53(6), 1432–1440 (2005). https://doi.org/10.1002/mrm.20508

    Article  Google Scholar 

  63. Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A.: Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn. Reson. Med. 65(3), 823–836 (2011). https://doi.org/10.1002/mrm.22655

    Article  Google Scholar 

  64. Marrale, M., Collura, G., Brai, M., Toschi, N., Midiri, F., La Tona, G., Lo Casto, A., Gagliardo, C.: Physics, techniques and review of neuroradiological applications of Diffusion Kurtosis Imaging (DKI). Clin. Neuroradiol. 26(4), 391–403 (2016). https://doi.org/10.1007/s00062-015-0469-9

    Article  Google Scholar 

  65. Wu, E.X., Cheung, M.M.: MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed. 23(7), 836–848 (2010). https://doi.org/10.1002/nbm.1506

    Article  Google Scholar 

  66. Hui, E.S., Fieremans, E., Jensen, J.H., Tabesh, A., Feng, W., Bonilha, L., Spampinato, M.V., Adams, R., Helpern, J.A.: Stroke assessment with diffusional kurtosis imaging. Stroke. 43(11), 2968–2973 (2012). https://doi.org/10.1161/STROKEAHA.112.657742

    Article  Google Scholar 

  67. Cheung, J.S., Wang, E., Lo, E.H., Sun, P.Z.: Stratification of heterogeneous diffusion MRI ischemic lesion with kurtosis imaging: evaluation of mean diffusion and kurtosis MRI mismatch in an animal model of transient focal ischemia. Stroke. 43(8), 2252–2254 (2012). https://doi.org/10.1161/STROKEAHA.112.661926

    Article  Google Scholar 

  68. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage. 23(3), 1176–1185 (2004). https://doi.org/10.1016/j.neuroimage.2004.07.037

    Article  Google Scholar 

  69. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 35(4), 1459–1472 (2007). https://doi.org/10.1016/j.neuroimage.2007.02.016

    Article  Google Scholar 

  70. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage. 103, 411–426 (2014). https://doi.org/10.1016/j.neuroimage.2014.07.061

    Article  Google Scholar 

  71. Raffelt, D.A., Tournier, J.D., Smith, R.E., Vaughan, D.N., Jackson, G., Ridgway, G.R., Connelly, A.: Investigating white matter fibre density and morphology using fixel-based analysis. NeuroImage. 144, 58–73 (2017). https://doi.org/10.1016/j.neuroimage.2016.09.029

    Article  Google Scholar 

  72. Raffelt, D.A., Smith, R.E., Ridgway, G.R., Tournier, J.D., Vaughan, D.N., Rose, S., Henderson, R., Connelly, A.: Connectivity-based fixel enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. NeuroImage. 117, 40–55 (2015). https://doi.org/10.1016/j.neuroimage.2015.05.039

    Article  Google Scholar 

  73. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J.: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59(6), 1347–1354 (2008). https://doi.org/10.1002/mrm.21577

    Article  Google Scholar 

  74. Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52(5), 965–978 (2004). https://doi.org/10.1002/mrm.20274

    Article  Google Scholar 

  75. Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J., Dyrby, T.B.: Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage. 52(4), 1374–1389 (2010). https://doi.org/10.1016/j.neuroimage.2010.05.043

    Article  Google Scholar 

  76. Fieremans, E., Jensen, J.H., Helpern, J.A.: White matter characterization with diffusional kurtosis imaging. NeuroImage. 58(1), 177–188 (2011). https://doi.org/10.1016/j.neuroimage.2011.06.006

    Article  Google Scholar 

  77. Jespersen, S.N., Kroenke, C.D., Ostergaard, L., Ackerman, J.J., Yablonskiy, D.A.: Modeling dendrite density from magnetic resonance diffusion measurements. NeuroImage. 34(4), 1473–1486 (2007). https://doi.org/10.1016/j.neuroimage.2006.10.037

    Article  Google Scholar 

  78. Jespersen, S.N., Bjarkam, C.R., Nyengaard, J.R., Chakravarty, M.M., Hansen, B., Vosegaard, T., Ostergaard, L., Yablonskiy, D., Nielsen, N.C., Vestergaard-Poulsen, P.: Neurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopy. NeuroImage. 49(1), 205–216 (2010). https://doi.org/10.1016/j.neuroimage.2009.08.053

    Article  Google Scholar 

  79. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage. 61(4), 1000–1016 (2012). https://doi.org/10.1016/j.neuroimage.2012.03.072

    Article  Google Scholar 

  80. Sotiropoulos, S.N., Behrens, T.E., Jbabdi, S.: Ball and rackets: inferring fiber fanning from diffusion-weighted MRI. NeuroImage. 60(2), 1412–1425 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.056

    Article  Google Scholar 

  81. Kaden, E., Kelm, N.D., Carson, R.P., Does, M.D., Alexander, D.C.: Multi-compartment microscopic diffusion imaging. NeuroImage. 139, 346–359 (2016). https://doi.org/10.1016/j.neuroimage.2016.06.002

    Article  Google Scholar 

  82. Novikov, D.S., Kiselev, V.G., Jespersen, S.N.: On modeling. Magn. Reson. Med. 79(6), 3172–3193 (2018). https://doi.org/10.1002/mrm.27101

    Article  Google Scholar 

  83. Reisert, M., Kellner, E., Dhital, B., Hennig, J., Kiselev, V.G.: Disentangling micro from mesostructure by diffusion MRI: a Bayesian approach. NeuroImage. 147, 964–975 (2017). https://doi.org/10.1016/j.neuroimage.2016.09.058

    Article  Google Scholar 

  84. Jelescu, I.O., Veraart, J., Fieremans, E., Novikov, D.S.: Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue. NMR Biomed. 29(1), 33–47 (2016). https://doi.org/10.1002/nbm.3450

    Article  Google Scholar 

  85. Colgan, N., Siowa, B., O’Callaghan, J.M., Harrison, I.F., Wells, J.A., Holmes, H.E., Ismail, O., Richardson, S., Alexander, D.C., Collins, E.C., Fisher, E.M., Johnson, R., Schwarz, A.J., Ahmed, Z., O’Neill, M.J., Murray, T.K., Zhang, H., Lythgoe, M.F.: Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer’s disease. NeuroImage. 125, 739–744 (2016). https://doi.org/10.1016/j.neuroimage.2015.10.043

    Article  Google Scholar 

  86. Kodiweera, C., Alexander, A.L., Harezlak, J., McAllister, T.W., Wu, Y.C.: Age effects and sex differences in human brain white matter of young to middle-aged adults: a DTI, NODDI, and q-space study. NeuroImage. 128, 180–192 (2016). https://doi.org/10.1016/j.neuroimage.2015.12.033

    Article  Google Scholar 

  87. Wen, Q.T., Kelley, D.A.C., Banerjee, S., Lupo, J.M., Chang, S.M., Xu, D., Hess, C.P., Nelson, S.J.: Clinically feasible NODDI characterization of glioma using multiband EPI at 7 T. Neuroimage-Clin. 9, 291–299 (2015). https://doi.org/10.1016/j.nicl.2015.08.017

    Article  Google Scholar 

  88. Beaulieu, C.: What makes diffusion anisotropic in the nervous system? In: Johns, D.K. (ed.) Diffusion MRI: Theory, Methods, and Applications. Oxford University Press, Cardiff (2010)

    Google Scholar 

  89. Gore, J.C., Xu, J., Colvin, D.C., Yankeelov, T.E., Parsons, E.C., Does, M.D.: Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy. NMR Biomed. 23(7), 745–756 (2010). https://doi.org/10.1002/nbm.1531

    Article  Google Scholar 

  90. Le Bihan, D.: Magnetic resonance diffusion imaging: introduction and concepts. In: Jones, D.K. (ed.) Diffusion MRI: Theory, Methods, and Applications, pp. 57–78. Oxford University Press, New York (2011)

    Google Scholar 

  91. Novikov, D.S., Fieremans, E., Jespersen, S.N., Kiselev, V.G.: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation. NMR Biomed. 32(4), Artn E3998 (2019). https://doi.org/10.1002/Nbm.3998

    Article  Google Scholar 

  92. Mitra, P.P., Sen, P.N., Schwartz, L.M.: Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. Phys. Rev. B Condens. Matter. 47(14), 8565–8574 (1993)

    Article  Google Scholar 

  93. Latour, L.L., Svoboda, K., Mitra, P.P., Sotak, C.H.: Time-dependent diffusion of water in a biological model system. Proc. Natl. Acad. Sci. U. S. A. 91(4), 1229–1233 (1994). https://doi.org/10.1073/pnas.91.4.1229

    Article  Google Scholar 

  94. Xu, J., Does, M.D., Gore, J.C.: Sensitivity of MR diffusion measurements to variations in intracellular structure: effects of nuclear size. Magn. Reson. Med. 61(4), 828–833 (2009). https://doi.org/10.1002/mrm.21793

    Article  Google Scholar 

  95. Xu, J., Does, M.D., Gore, J.C.: Quantitative characterization of tissue microstructure with temporal diffusion spectroscopy. J. Magn. Reson. 200(2), 189–197 (2009). https://doi.org/10.1016/j.jmr.2009.06.022

    Article  Google Scholar 

  96. Xu, J., Does, M.D., Gore, J.C.: Dependence of temporal diffusion spectra on microstructural properties of biological tissues. Magn. Reson. Imaging. 29(3), 380–390 (2011). https://doi.org/10.1016/j.mri.2010.10.002

    Article  Google Scholar 

  97. Colvin, D.C., Yankeelov, T.E., Does, M.D., Yue, Z., Quarles, C., Gore, J.C.: New insights into tumor microstructure using temporal diffusion spectroscopy. Cancer Res. 68(14), 5941–5947 (2008). https://doi.org/10.1158/0008-5472.CAN-08-0832

    Article  Google Scholar 

  98. Aggarwal, M., Jones, M.V., Calabresi, P.A., Mori, S., Zhang, J.Y.: Probing mouse brain microstructure using oscillating gradient diffusion MRI. Magn. Reson. Med. 67(1), 98–109 (2012). https://doi.org/10.1002/mrm.22981

    Article  Google Scholar 

  99. Panagiotaki, E., Walker-Samuel, S., Siow, B., Johnson, S.P., Rajkumar, V., Pedley, R.B., Lythgoe, M.F., Alexander, D.C.: Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 74(7), 1902–1912 (2014). https://doi.org/10.1158/0008-5472.CAN-13-2511

    Article  Google Scholar 

  100. Wu, D., Martin, L.J., Northington, F.J., Zhang, J.: Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia-ischemia injured mouse brains. Magn. Reson. Med. (2014). https://doi.org/10.1002/mrm.25441

  101. Wu, D., Martin, L.J., Northington, F.J., Zhang, J.: Oscillating-gradient diffusion magnetic resonance imaging detects acute subcellular structural changes in the mouse forebrain after neonatal hypoxia-ischemia. J. Cereb. Blood Flow Metab..:271678X18759859. (2018). https://doi.org/10.1177/0271678X18759859

  102. Li, H., Gore, J.C., Xu, J.Z.: Fast and robust measurement of microstructural dimensions using temporal diffusion spectroscopy. J. Magn. Reson. 242, 4–9 (2014). https://doi.org/10.1016/j.jmr.2014.02.007

    Article  Google Scholar 

  103. Drobnjak, I., Zhang, H., Ianus, A., Kaden, E., Alexander, D.C.: PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: insight from a simulation study. Magn. Reson. Med. 75(2), 688–700 (2016). https://doi.org/10.1002/mrm.25631

    Article  Google Scholar 

  104. Jiang, X., Li, H., **e, J., McKinley, E.T., Zhao, P., Gore, J.C., Xu, J.: In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy. Magn. Reson. Med. 78(1), 156–164 (2017). https://doi.org/10.1002/mrm.26356

    Article  Google Scholar 

  105. Reynaud, O., Winters, K.V., Hoang, D.M., Wadghiri, Y.Z., Novikov, D.S., Kim, S.G.: Pulsed and oscillating gradient MRI for assessment of cell size and extracellular space (POMACE) in mouse gliomas. NMR Biomed. 29(10), 1350–1363 (2016). https://doi.org/10.1002/nbm.3577

    Article  Google Scholar 

  106. Fieremans, E., Novikov, D.S., Jensen, J.H., Helpern, J.A.: Monte Carlo study of a two-compartment exchange model of diffusion. NMR Biomed. 23(7), 711–724 (2010). https://doi.org/10.1002/nbm.1577

    Article  Google Scholar 

  107. Wu, D., Li, Q., Northington, F.J., Zhang, J.Y.: Oscillating gradient diffusion kurtosis imaging of normal and injured mouse brains. NMR Biomed. 31(6), Artn E3917 (2018). https://doi.org/10.1002/Nbm.3917

    Article  Google Scholar 

  108. Jespersen, S.N., Olesen, J.L., Hansen, B., Shemesh, N.: Diffusion time dependence of microstructural parameters in fixed spinal cord. NeuroImage. 182, 329–342 (2018). https://doi.org/10.1016/j.neuroimage.2017.08.039

    Article  Google Scholar 

  109. Hutter, J., Slator, P.J., Christiaens, D., Teixeira, R.P.A.G., Roberts, T., Jackson, L., Price, A.N., Malik, S., Hajnal, J.V.: Integrated and efficient diffusion-relaxometry using ZEBRA. Sci Rep-Uk. 8, Artn 15138 (2018). https://doi.org/10.1038/S41598-018-33463-2

    Article  Google Scholar 

  110. Veraart, J., Novikov, D.S., Fieremans, E.: TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T2 relaxation times. NeuroImage. 182, 360–369 (2018). https://doi.org/10.1016/j.neuroimage.2017.09.030

    Article  Google Scholar 

  111. Kim, D., Doyle, E.K., Wisnowski, J.L., Kim, J.H., Haldar, J.P.: Diffusion-relaxation correlation spectroscopic imaging: a multidimensional approach for probing microstructure. Magn. Reson. Med. 78(6), 2236–2249 (2017). https://doi.org/10.1002/mrm.26629

    Article  Google Scholar 

  112. Benjamini, D., Basser, P.J.: Towards clinically feasible relaxation-diffusion correlation MRI using MADCO. Microporous Mesoporous Mater. 269, 93–96 (2018). https://doi.org/10.1016/j.micromeso.2017.02.001

    Article  Google Scholar 

  113. Alexander, D.C., Dyrby, T.B.: Diffusion imaging with stimulated echoes: signal models and experiment design. 1305.7367 (2013) [physics.med-ph]

    Google Scholar 

  114. Tan, E.T., Shih, R.Y., Mitra, J., Sprenger, T., Hua, Y., Bhushan, C., Bernstein, M.A., McNab, J.A., DeMarco, J.K., Ho, V.B., Foo, T.K.F.: Oscillating diffusion-encoding with a high gradient-amplitude and high slew-rate head-only gradient for human brain imaging. Magn. Reson. Med. 84(2), 950–965 (2020). https://doi.org/10.1002/mrm.28180

    Article  Google Scholar 

  115. Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T.E., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S.W., Della Penna, S., Feinberg, D., Glasser, M.F., Harel, N., Heath, A.C., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S., Oostenveld, R., Petersen, S.E., Prior, F., Schlaggar, B.L., Smith, S.M., Snyder, A.Z., Xu, J., Yacoub, E., WU-MH, C.: The Human Connectome Project: a data acquisition perspective. NeuroImage. 62(4), 2222–2231 (2012). https://doi.org/10.1016/j.neuroimage.2012.02.018

    Article  Google Scholar 

  116. Wu, D., Liu, D., Hsu, Y.C., Li, H., Sun, Y., Qin, Q., Zhang, Y.: Diffusion-prepared 3D gradient spin-echo sequence for improved oscillating gradient diffusion MRI. Magn. Reson. Med. (2020). https://doi.org/10.1002/mrm.28401

  117. Wu, D., Zhang, J.: The effect of microcirculatory flow on oscillating gradient diffusion MRI and diffusion encoding with Dual-Frequency Orthogonal Gradients (DEFOG). Magn. Reson. Med. 77(4), 1583–1592 (2017). https://doi.org/10.1002/mrm.26242

    Article  Google Scholar 

  118. Van, A.T., Holdsworth, S.J., Bammer, R.: In vivo investigation of restricted diffusion in the human brain with optimized oscillating diffusion gradient encoding. Magn. Reson. Med. (2013). https://doi.org/10.1002/mrm.24632

  119. Baron, C.A., Kate, M., Gioia, L., Butcher, K., Emery, D., Budde, M., Beaulieu, C.: Reduction of Diffusion-weighted imaging contrast of acute ischemic stroke at short diffusion times. Stroke. 46(8), 2136–2141 (2015). https://doi.org/10.1161/Strokeaha.115.008815

    Article  Google Scholar 

  120. Moseley, M.E., Cohen, Y., Mintorovitch, J., Chileuitt, L., Shimizu, H., Kucharczyk, J., Wendland, M.F., Weinstein, P.R.: Early detection of regional cerebral-ischemia in cats – comparison of diffusion-weighted and T2-weighted MRI and spectroscopy. Magn. Reson. Med. 14(2), 330–346 (1990). https://doi.org/10.1002/mrm.1910140218

    Article  Google Scholar 

  121. Hjort, N., Christensen, S., Solling, C., Ashkanian, M., Wu, O., Rohl, L., Gyldensted, C., Andersen, G., Ostergaard, L.: Ischemic injury detected by diffusion imaging 11 minutes after stroke. Ann. Neurol. 58(3), 462–465 (2005). https://doi.org/10.1002/Ana.20595

    Article  Google Scholar 

  122. Hacke, W., Albers, G., Al-Rawi, Y., Bogousslavsky, J., Davalos, A., Eliasziw, M., Fischer, M., Furlan, A., Kaste, M., Lees, K.R., Soehngen, M., Warach, S., Grp, D.S.: The Desmoteplase In Acute Ischemic Stroke Trial (DIAS) – A phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke. 36(1), 66–73 (2005). https://doi.org/10.1161/01.Str.0000149938.08731.2c

    Article  Google Scholar 

  123. Kidwell, C.S., Alger, J.R., Saver, J.L.: Evolving paradigms in neuroimaging of the ischemic penumbra. Stroke. 35(11), 2662–2665 (2004). https://doi.org/10.1161/01.Str.0000143222.13069.70

    Article  Google Scholar 

  124. Davis, S.M., Donnan, G.A., Parsons, M.W., Levi, C., Butcher, K.S., Peeters, A., Barber, P.A., Bladin, C., De Silva, D.A., Byrnes, G., Chalk, J.B., Fink, J.N., Kimber, T.E., Schultz, D., Hand, P.J., Frayne, J., Hankey, G., Muir, K., Gerraty, R., Tress, B.M., Desmond, P.M., Investigators, E.: Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 7(4), 299–309 (2008). https://doi.org/10.1016/S1474-4422(08)70044-9

    Article  Google Scholar 

  125. Sorensen, A.G., Buonanno, F.S., Gonzalez, R.G., Schwamm, L.H., Lev, M.H., HuangHellinger, F.R., Reese, T.G., Weisskoff, R.M., Davis, T.L., Suwanwela, N., Can, U., Moreira, J.A., Copen, W.A., Look, R.B., Finklestein, S.P., Rosen, B.R., Koroshetz, W.J.: Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology. 199(2), 391–401 (1996). https://doi.org/10.1148/radiology.199.2.8668784

    Article  Google Scholar 

  126. Lutsep, H.L., Albers, G.W., DeCrespigny, A., Kamat, G.N., Marks, M.P., Moseley, M.E.: Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke. Ann. Neurol. 41(5), 574–580 (1997). https://doi.org/10.1002/ana.410410505

    Article  Google Scholar 

  127. Yang, Q., Tress, B.M., Barber, P.A., Desmond, P.M., Darby, D.G., Gerraty, R.P., Li, T., Davis, S.M.: Serial study of apparent diffusion coefficient and anisotropy in patients with acute stroke. Stroke. 30(11), 2382–2390 (1999). https://doi.org/10.1161/01.Str.30.11.2382

    Article  Google Scholar 

  128. Schlaug, G., Siewert, B., Benfield, A., Edelman, R.R., Warach, S.: Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology. 49(1), 113–119 (1997). https://doi.org/10.1212/Wnl.49.1.113

    Article  Google Scholar 

  129. Sugahara, T., Korogi, Y., Kochi, M., Ikushima, I., Shigematu, Y., Hirai, T., Okuda, T., Liang, L., Ge, Y., Komohara, Y., Ushio, Y., Takahashi, M.: Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J. Magn. Reson. Imaging. 9(1), 53–60 (1999). https://doi.org/10.1002/(sici)1522-2586(199901)9:1<53::aid-jmri7>3.0.co;2-2

    Article  Google Scholar 

  130. Kono, K., Inoue, Y., Nakayama, K., Shakudo, M., Morino, M., Ohata, K., Wakasa, K., Yamada, R.: The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am. J. Neuroradiol. 22(6), 1081–1088 (2001)

    Google Scholar 

  131. White, N.S., Leergaard, T.B., D’Arceuil, H., Bjaalie, J.G., Dale, A.M.: Probing tissue microstructure with restriction spectrum imaging: histological and theoretical validation. Hum. Brain Mapp. 34(2), 327–346 (2013). https://doi.org/10.1002/hbm.21454

    Article  Google Scholar 

  132. Bennett, K.M., Schmainda, K.M., Bennett, R.T., Rowe, D.B., Lu, H., Hyde, J.S.: Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn. Reson. Med. 50(4), 727–734 (2003). https://doi.org/10.1002/mrm.10581

    Article  Google Scholar 

  133. Zhou, X.J., Gao, Q., Abdullah, O., Magin, R.L.: Studies of anomalous diffusion in the human brain using fractional order calculus. Magn. Reson. Med. 63(3), 562–569 (2010). https://doi.org/10.1002/mrm.22285

    Article  Google Scholar 

  134. Ingo, C., Magin, R.L., Colon-Perez, L., Triplett, W., Mareci, T.H.: On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue. Magn. Reson. Med. 71(2), 617–627 (2014). https://doi.org/10.1002/mrm.24706

    Article  Google Scholar 

  135. Roosendaal, S.D., Geurts, J.J.G., Vrenken, H., Hulst, H.E., Cover, K.S., Castelijns, J.A., Pouwels, P.J.W., Barkhof, F.: Regional DTI differences in multiple sclerosis patients. NeuroImage. 44(4), 1397–1403 (2009). https://doi.org/10.1016/j.neuroimage.2008.10.026

    Article  Google Scholar 

  136. Yu, H.J., Christodoulou, C., Bhise, V., Greenblatt, D., Patel, Y., Serafin, D., Maletic-Savatic, M., Krupp, L.B., Wagshul, M.E.: Multiple white matter tract abnormalities underlie cognitive impairment in RRMS. NeuroImage. 59(4), 3713–3722 (2012). https://doi.org/10.1016/j.neuroimage.2011.10.053

    Article  Google Scholar 

  137. Raz, E., Cercignani, M., Sbardella, E., Totaro, P., Pozzilli, C., Bozzali, M., Pantano, P.: Clinically isolated syndrome suggestive of multiple sclerosis: voxelwise regional investigation of white and gray matter. Radiology. 254(1), 227–234 (2010). https://doi.org/10.1148/radiol.2541090817

    Article  Google Scholar 

  138. Dineen, R.A., Bradshaw, C.M., Constantinescu, C.S., Auer, D.P.: Extra-hippocampal subcortical limbic involvement predicts episodic recall performance in multiple sclerosis. PLoS One. 7(10), ARTN e44942 (2012). https://doi.org/10.1371/journal.pone.0044942

    Article  Google Scholar 

  139. Fink, F., Eling, P., Rischkau, E., Beyer, N., Tomandl, B., Klein, J., Hildebrandt, H.: The association between California Verbal Learning Test performance and fibre impairment in multiple sclerosis: evidence from diffusion tensor imaging. Mult. Scler. 16(3), 332–341 (2010). https://doi.org/10.1177/1352458509356367

    Article  Google Scholar 

  140. Mesaros, S., Rocca, M.A., Kacar, K., Kostic, J., Copetti, M., Stosic-Opincal, T., Preziosa, P., Sala, S., Riccitelli, G., Horsfield, M.A., Drulovic, J., Comi, G., Filippi, M.: Diffusion tensor MRI tractography and cognitive impairment in multiple sclerosis. Neurology. 78(13), 969–975 (2012). https://doi.org/10.1212/Wnl.0b013e31824d5859

    Article  Google Scholar 

  141. Preziosa, P., Rocca, M.A., Mesaros, S., Pagani, E., Stosic-Opincal, T., Kacar, K., Absinta, M., Caputo, D., Drulovic, J., Comi, G., Filippi, M.: Intrinsic damage to the major white matter tracts in patients with different clinical phenotypes of multiple sclerosis: a voxelwise diffusion-tensor MR study. Radiology. 260(2), 541–550 (2011). https://doi.org/10.1148/radiol.11110315

    Article  Google Scholar 

  142. Kern, K.C., Sarcona, J., Montag, M., Giesser, B.S., Sicotte, N.L.: Corpus callosal diffusivity predicts motor impairment in relapsing-remitting multiple sclerosis: a TBSS and tractography study. NeuroImage. 55(3), 1169–1177 (2011). https://doi.org/10.1016/j.neuroimage.2010.10.077

    Article  Google Scholar 

  143. Bodini, B., Cercignani, M., Toosy, A., De Stefano, N., Miller, D.H., Thompson, A.J., Ciccarelli, O.: A novel approach with “Skeletonised MTR” measures tract-specific microstructural changes in early primary-progressive MS. Hum. Brain Mapp. 35(2), 723–733 (2014). https://doi.org/10.1002/hbm.22196

    Article  Google Scholar 

  144. Bozzali, M., Franceschi, M., Falini, A., Pontesilli, S., Cercignani, M., Magnani, G., Scotti, G., Comi, G., Filippi, M.: Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI. Neurology. 57(6), 1135–1137 (2001). https://doi.org/10.1212/Wnl.57.6.1135

    Article  Google Scholar 

  145. Kantarci, K., Jack, C.R., Xu, Y.C., Campeau, N.G., O’Brien, P.C., Smith, G.E., Ivnik, R.J., Boeve, B.F., Kokmen, E., Tangalos, E.G., Petersen, R.C.: Mild cognitive impairment and Alzheimer disease: regional diffusivity of water. Radiology. 219(1), 101–107 (2001). https://doi.org/10.1148/radiology.219.1.r01ap14101

    Article  Google Scholar 

  146. Scola, E., Bozzali, M., Agosta, F., Magnani, G., Franceschi, M., Sormani, M.P., Cercignani, M., Pagani, E., Falautano, M., Filippi, M., Falini, A.: A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up. J Neurol Neurosur Ps. 81(7), 798–805 (2010). https://doi.org/10.1136/jnnp.2009.189639

    Article  Google Scholar 

  147. Bozzali, M., Cherubini, A.: Diffusion tensor MRI to investigate dementias: a brief review. Magn. Reson. Imaging. 25(6), 969–977 (2007). https://doi.org/10.1016/j.mri.2007.03.017

    Article  Google Scholar 

  148. Agosta, F., Pievani, M., Sala, S., Geroldi, C., Galluzzi, S., Frisoni, G.B., Filippi, M.: White matter damage in Alzheimer disease and its relationship to gray matter atrophy. Radiology. 258(3), 853–863 (2011). https://doi.org/10.1148/radiol.10101284

    Article  Google Scholar 

  149. Shu, N., Wang, Z., Qi, Z., Li, K., He, Y.: Multiple diffusion indices reveals white matter degeneration in Alzheimer’s disease and mild cognitive impairment: a tract-based spatial statistics study. J Alzheimer’s Dis: JAD. 26(Suppl 3), 275–285 (2011). https://doi.org/10.3233/JAD-2011-0024

    Article  Google Scholar 

  150. Acosta-Cabronero, J., Williams, G.B., Pengas, G., Nestor, P.J.: Absolute diffusivities define the landscape of white matter degeneration in Alzheimer’s disease. Brain. 133(Pt 2), 529–539 (2010). https://doi.org/10.1093/brain/awp257

    Article  Google Scholar 

  151. Lo, C.Y., Wang, P.N., Chou, K.H., Wang, J., He, Y., Lin, C.P.: Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer’s disease. J. Neurosci. 30(50), 16876–16885 (2010). https://doi.org/10.1523/JNEUROSCI.4136-10.2010

    Article  Google Scholar 

  152. Mito, R., Raffelt, D., Dhollander, T., Vaughan, D.N., Tournier, J.D., Salvado, O., Brodtmann, A., Rowe, C.C., Villemagne, V.L., Connelly, A.: Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain. 141, 888–902 (2018). https://doi.org/10.1093/brain/awx355

    Article  Google Scholar 

  153. Mukherjee, P., Miller, J.H., Shimony, J.S., Conturo, T.E., Lee, B.C., Almli, C.R., McKinstry, R.C.: Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology. 221(2), 349–358 (2001). https://doi.org/10.1148/radiol.2212001702

    Article  Google Scholar 

  154. Brown, T.T., Kuperman, J.M., Chung, Y., Erhart, M., McCabe, C., Hagler Jr., D.J., Venkatraman, V.K., Akshoomoff, N., Amaral, D.G., Bloss, C.S., Casey, B.J., Chang, L., Ernst, T.M., Frazier, J.A., Gruen, J.R., Kaufmann, W.E., Kenet, T., Kennedy, D.N., Murray, S.S., Sowell, E.R., Jernigan, T.L., Dale, A.M.: Neuroanatomical assessment of biological maturity. Curr. Biol. 22(18), 1693–1698 (2012). https://doi.org/10.1016/j.cub.2012.07.002

    Article  Google Scholar 

  155. Zhang, L., Thomas, K.M., Davidson, M.C., Casey, B.J., Heier, L.A., Ulug, A.M.: MR quantitation of volume and diffusion changes in the develo** brain. AJNR Am. J. Neuroradiol. 26(1), 45–49 (2005)

    Google Scholar 

  156. Saksena, S., Husain, N., Malik, G.K., Trivedi, R., Sarma, M., Rathore, R.S., Pandey, C.M., Gupta, R.K.: Comparative evaluation of the cerebral and cerebellar white matter development in pediatric age group using quantitative diffusion tensor imaging. Cerebellum. 7(3), 392–400 (2008). https://doi.org/10.1007/s12311-008-0041-0

    Article  Google Scholar 

  157. Yap, Q.J., Teh, I., Fusar-Poli, P., Sum, M.Y., Kuswanto, C., Sim, K.: Tracking cerebral white matter changes across the lifespan: insights from diffusion tensor imaging studies. J. Neural Transm. (Vienna). 120(9), 1369–1395 (2013). https://doi.org/10.1007/s00702-013-0971-7

    Article  Google Scholar 

  158. Huppi, P.S., Maier, S.E., Peled, S., Zientara, G.P., Barnes, P.D., Jolesz, F.A., Volpe, J.J.: Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr. Res. 44(4), 584–590 (1998). https://doi.org/10.1203/00006450-199810000-00019

    Article  Google Scholar 

  159. Partridge, S.C., Mukherjee, P., Henry, R.G., Miller, S.P., Berman, J.I., **, H., Lu, Y., Glenn, O.A., Ferriero, D.M., Barkovich, A.J., Vigneron, D.B.: Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. NeuroImage. 22(3), 1302–1314 (2004). https://doi.org/10.1016/j.neuroimage.2004.02.038

    Article  Google Scholar 

  160. Yoo, S.S., Park, H.J., Soul, J.S., Mamata, H., Park, H., Westin, C.F., Bassan, H., Du Plessis, A.J., Robertson Jr., R.L., Maier, S.E., Ringer, S.A., Volpe, J.J., Zientara, G.P.: In vivo visualization of white matter fiber tracts of preterm- and term-infant brains with diffusion tensor magnetic resonance imaging. Investig. Radiol. 40(2), 110–115 (2005)

    Article  Google Scholar 

  161. Akazawa, K., Chang, L., Yamakawa, R., Hayama, S., Buchthal, S., Alicata, D., Andres, T., Castillo, D., Oishi, K., Skranes, J., Ernst, T., Oishi, K.: Probabilistic maps of the white matter tracts with known associated functions on the neonatal brain atlas: application to evaluate longitudinal developmental trajectories in term-born and preterm-born infants. NeuroImage. 128, 167–179 (2016). https://doi.org/10.1016/j.neuroimage.2015.12.026

    Article  Google Scholar 

  162. Rutherford, M., Counsell, S., Allsop, J., Boardman, J., Kapellou, O., Larkman, D., Hajnal, J., Edwards, D., Cowan, F.: Diffusion-weighted magnetic resonance imaging in term perinatal brain injury: a comparison with site of lesion and time from birth. Pediatrics. 114(4), 1004–1014 (2004). https://doi.org/10.1542/peds.2004-0222

    Article  Google Scholar 

  163. Tusor, N., Wusthoff, C., Smee, N., Merchant, N., Arichi, T., Allsop, J.M., Cowan, F.M., Azzopardi, D., Edwards, A.D., Counsell, S.J.: Prediction of neurodevelopmental outcome after hypoxic-ischemic encephalopathy treated with hypothermia by diffusion tensor imaging analyzed using tract-based spatial statistics. Pediatr. Res. 72(1), 63–69 (2012). https://doi.org/10.1038/pr.2012.40

    Article  Google Scholar 

  164. Inder, T., Huppi, P.S., Zientara, G.P., Maier, S.E., Jolesz, F.A., di Salvo, D., Robertson, R., Barnes, P.D., Volpe, J.J.: Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques. J. Pediatr.-Us. 134(5), 631–634 (1999). https://doi.org/10.1016/S0022-3476(99)70251-9

    Article  Google Scholar 

  165. Nagae, L.M., Hoon, A.H., Stashinko, E., Lin, D., Zhang, W., Levey, E., Wakana, S., Jiang, H., Leite, C.C., Lucato, L.T., van Ziji, P.C.M., Johnston, M.V., Mori, S.: Diffusion tensor imaging in children with periventricular leukomalacia: variability of injuries to white matter tracts. Am. J. Neuroradiol. 28(7), 1213–1222 (2007). https://doi.org/10.3174/ajnr.A0534

    Article  Google Scholar 

  166. Thompson, D.K., Inder, T.E., Faggian, N., Johnston, L., Warfield, S.K., Anderson, P.J., Doyle, L.W., Egan, G.F.: Characterization of the corpus callosum in very preterm and full-term infants utilizing MRI. NeuroImage. 55(2), 479–490 (2011). https://doi.org/10.1016/j.neuroimage.2010.12.025

    Article  Google Scholar 

  167. Wu, D., Chang, L.D., Akazawa, K., Oishi, K., Skranes, J., Ernst, T., Oishi, K.: Map** the critical gestational age at birth that alters brain development in preterm-born infants using multi-modal MRI. NeuroImage. 149, 33–43 (2017). https://doi.org/10.1016/j.neuroimage.2017.01.046

    Article  Google Scholar 

  168. Mori, S., Zhang, J.: Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 51(5), 527–539 (2006). https://doi.org/10.1016/j.neuron.2006.08.012

    Article  Google Scholar 

  169. Zhang, J., Huang, H., Aggarwal, M., Mori, S.: Diffusion tensor microimaging and its applications. In: Jones, D.K. (ed.) Diffusion MRI: Theory, Methods, and Applications, pp. 425–438. Oxford University Press, New York (2011)

    Google Scholar 

  170. Xu, J.Z., Li, H., Harkins, K.D., Jiang, X.Y., ** mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy. NeuroImage. 103, 10–19 (2014). https://doi.org/10.1016/j.neuroimage.2014.09.006

    Article  Google Scholar 

  171. Wang, S., Wu, E.X., Qiu, D., Leung, L.H., Lau, H.F., Khong, P.L.: Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model. Cancer Res. 69(3), 1190–1198 (2009). https://doi.org/10.1158/0008-5472.CAN-08-2661

    Article  Google Scholar 

  172. Miyasaka, N., Nagaoka, T., Kuroiwa, T., Akimoto, H., Haku, T., Kubota, T., Aso, T.: Histopathologic correlates of temporal diffusion changes in a rat model of cerebral hypoxia/ischemia. AJNR Am. J. Neuroradiol. 21(1), 60–66 (2000)

    Google Scholar 

  173. Rumpel, H., Nedelcu, J., Aguzzi, A., Martin, E.: Late glial swelling after acute cerebral hypoxia-ischemia in the neonatal rat: a combined magnetic resonance and histochemical study. Pediatr. Res. 42(1), 54–59 (1997). https://doi.org/10.1203/00006450-199707000-00009

    Article  Google Scholar 

  174. Lansberg, M.G., Thijs, V.N., O’Brien, M.W., Ali, J.O., de Crespigny, A.J., Tong, D.C., Moseley, M.E., Albers, G.W.: Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke. AJNR Am. J. Neuroradiol. 22(4), 637–644 (2001)

    Google Scholar 

  175. Silva, M.D., Omae, T., Helmer, K.G., Li, F.H., Fisher, M., Sotak, C.H.: Separating changes in the intra- and extracellular water apparent diffusion coefficient following focal cerebral ischemia in the rat brain. Magn. Reson. Med. 48(5), 826–837 (2002). https://doi.org/10.1002/mrm.10296

    Article  Google Scholar 

  176. Duong, T.Q., Sehy, J.V., Yablonskiy, D.A., Snider, B.T., Ackerman, J.J.H., Neil, J.J.: Extracellular apparent diffusion in rat brain. Magn. Reson. Med. 45(5), 801–810 (2001). https://doi.org/10.1002/Mrm.1108

    Article  Google Scholar 

  177. Duong, T.Q., Ackerman, J.J., Ying, H.S., Neil, J.J.: Evaluation of extra- and intracellular apparent diffusion in normal and globally ischemic rat brain via 19F NMR. Magn. Reson. Med. 40(1), 1–13 (1998)

    Article  Google Scholar 

  178. Bednarek, N., Mathur, A., Inder, T., Wilkinson, J., Neil, J., Shimony, J.: Impact of therapeutic hypothermia on MRI diffusion changes in neonatal encephalopathy. Neurology. 78(18), 1420–1427 (2012). https://doi.org/10.1212/WNL.0b013e318253d589

    Article  Google Scholar 

  179. Bonifacio, S.L., Glass, H.C., Vanderpluym, J., Agrawal, A.T., Xu, D., Barkovich, A.J., Ferriero, D.M.: Perinatal events and early magnetic resonance imaging in therapeutic hypothermia. J. Pediatr. 158(3), 360–365 (2011). https://doi.org/10.1016/j.jpeds.2010.09.003

    Article  Google Scholar 

  180. Wu, D., Zhang, J.: Recent progress in magnetic resonance imaging of the embryonic and neonatal mouse brain. Front. Neuroanat. 10, 18 (2016). https://doi.org/10.3389/fnana.2016.00018

    Article  Google Scholar 

  181. Oguz, I., McMurray, M.S., Styner, M., Johns, J.M.: The translational role of diffusion tensor image analysis in animal models of developmental pathologies. Dev. Neurosci. 34(1), 5–19 (2012). https://doi.org/10.1159/000336825

    Article  Google Scholar 

  182. Zhang, J., Richards, L.J., Yarowsky, P., Huang, H., van Zijl, P.C., Mori, S.: Three-dimensional anatomical characterization of the develo** mouse brain by diffusion tensor microimaging. NeuroImage. 20(3), 1639–1648 (2003)

    Article  Google Scholar 

  183. Aggarwal, M., Gobius, I., Richards, L.J., Mori, S.: Diffusion MR microscopy of cortical development in the mouse embryo. Cereb. Cortex. 25(7), 1970–1980 (2015). https://doi.org/10.1093/cercor/bhu006

    Article  Google Scholar 

  184. Huang, H., Yamamoto, A., Hossain, M.A., Younes, L., Mori, S.: Quantitative cortical map** of fractional anisotropy in develo** rat brains. J. Neurosci. 28(6), 1427–1433 (2008). https://doi.org/10.1523/jneurosci.3194-07.2008

    Article  Google Scholar 

  185. Sizonenko, S.V., Camm, E.J., Garbow, J.R., Maier, S.E., Inder, T.E., Williams, C.E., Neil, J.J., Huppi, P.S.: Developmental changes and injury induced disruption of the radial organization of the cortex in the immature rat brain revealed by in vivo diffusion tensor MRI. Cereb. Cortex. 17(11), 2609–2617 (2007). https://doi.org/10.1093/cercor/bhl168

    Article  Google Scholar 

  186. Harsan, L.A., David, C., Reisert, M., Schnell, S., Hennig, J., von Elverfeldt, D., Staiger, J.F.: Map** remodeling of thalamocortical projections in the living reeler mouse brain by diffusion tractography. Proc. Natl. Acad. Sci. U. S. A. 110(19), E1797–E1806 (2013). https://doi.org/10.1073/pnas.1218330110

    Article  Google Scholar 

  187. Wu, D., Lei, J., Rosenzweig, J.M., Burd, I., Zhang, J.Y.: In utero localized diffusion MRI of the embryonic mouse brain microstructure and injury. J. Magn. Reson. Imaging. 42(3), 717–728 (2015). https://doi.org/10.1002/jmri.24828

    Article  Google Scholar 

  188. Zhang, J., Wu, D., Turnbull, D.H.: In utero MRI of mouse embryos. Methods Mol. Biol.. (Clifton, NJ). 1718, 285–296 (2018). https://doi.org/10.1007/978-1-4939-7531-0_17

    Article  Google Scholar 

  189. Edlow, B.L., Mareyam, A., Horn, A., Polimeni, J.R., Witzel, T., Tisdall, M.D., Augustinack, J.C., Stockmann, J.P., Diamond, B.R., Stevens, A., Tirrell, L.S., Folkerth, R.D., Wald, L.L., Fischl, B., van der Kouwe, A.: (7) Tesla MRI of the ex vivo human brain at 100 micron resolution. Sci Data. 6, Artn 244 (2019). https://doi.org/10.1038/S41597-019-0254-8

    Article  Google Scholar 

  190. Petiet, A.E., Kaufman, M.H., Goddeeris, M.M., Brandenburg, J., Elmore, S.A., Johnson, G.A.: High-resolution magnetic resonance histology of the embryonic and neonatal mouse: a 4D atlas and morphologic database. Proc. Natl. Acad. Sci. U. S. A. 105(34), 12331–12336 (2008). https://doi.org/10.1073/pnas.0805747105

    Article  Google Scholar 

  191. Winterburn, J.L., Pruessner, J.C., Chavez, S., Schira, M.M., Lobaugh, N.J., Voineskos, A.N., Chakravarty, M.M.: A novel in vivo atlas of human hippocampal subfields using high-resolution 3 T magnetic resonance imaging. NeuroImage. 74, 254–265 (2013). https://doi.org/10.1016/j.neuroimage.2013.02.003

    Article  Google Scholar 

  192. Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., Feinberg, D.A., Yacoub, E., Lenglet, C., Van Essen, D.C., Ugurbil, K., Behrens, T.E., Consortium WU-MH: Advances in diffusion MRI acquisition and processing in the Human Connectome Project. NeuroImage. 80, 125–143 (2013). https://doi.org/10.1016/j.neuroimage.2013.05.057

    Article  Google Scholar 

  193. Haldar, J.P., Liu, Y., Liao, C., Fan, Q., Setsompop, K.: Fast submillimeter diffusion MRI using gSlider-SMS and SNR-enhancing joint reconstruction. Magn. Reson. Med. 84(2), 762–776 (2020). https://doi.org/10.1002/mrm.28172

    Article  Google Scholar 

  194. Elsaid, N.M.H., Wu, Y.-C.: Super-resolution diffusion tensor imaging using SRCNN: a feasibility study(). Conf Proc IEEE Eng Med Biol Soc. 2019, 2830–2834 (2019). https://doi.org/10.1109/EMBC.2019.8857125

    Article  Google Scholar 

  195. Ordidge, R.J., Helpern, J.A., Qing, Z.X., Knight, R.A., Nagesh, V.: Correction of motional artifacts in diffusion-weighted MR-images using navigator echoes. Magn. Reson. Imaging. 12(3), 455–460 (1994). https://doi.org/10.1016/0730-725x(94)92539-9

    Article  Google Scholar 

  196. Gourtsoyianni, S., Papanikolaou, N., Yarmenitis, S., Maris, T., Karantanas, A., Gourtsoyiannis, N.: Respiratory gated diffusion-weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur. Radiol. 18(3), 486–492 (2008). https://doi.org/10.1007/s00330-007-0798-4

    Article  Google Scholar 

  197. Spuentrup, E., Buecker, A., Koelker, C., Guenther, R.W., Stuber, M.: Respiratory motion artifact suppression in diffusion-weighted MR imaging of the spine. Eur. Radiol. 13(2), 330–336 (2003). https://doi.org/10.1007/s00330-002-1603-z

    Article  Google Scholar 

  198. Reese, T.G., Weisskoff, R.M., Smith, R.N., Rosen, B.R., Dinsmore, R.E., Wedeen, V.J.: Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn. Reson. Med. 34(6), 786–791 (1995). https://doi.org/10.1002/mrm.1910340603

    Article  Google Scholar 

  199. Oubel, E., Koob, M., Studholme, C., Dietemann, J.L., Rousseau, F.: Reconstruction of scattered data in fetal diffusion MRI. Med. Image Anal. 16(1), 28–37 (2012). https://doi.org/10.1016/j.media.2011.04.004

    Article  Google Scholar 

  200. Khan, S., Vasung, L., Marami, B., Rollins, C.K., Afacan, O., Ortinau, C.M., Yang, E., Warfield, S.K., Gholipour, A.: Fetal brain growth portrayed by a spatiotemporal diffusion tensor MRI atlas computed from in utero images. NeuroImage. 185, 593–608 (2019). https://doi.org/10.1016/j.neuroimage.2018.08.030

    Article  Google Scholar 

  201. Han, Y., Sunwoo, L., Ye, J.C.: k -space deep learning for accelerated MRI. IEEE Trans. Med. Imaging. 39(2), 377–386 (2020). https://doi.org/10.1109/TMI.2019.2927101

    Article  Google Scholar 

  202. Golkov, V., Dosovitskiy, A., Sperl, J.I., Menzel, M.I., Czisch, M., Samann, P., Brox, T., Cremers, D.: q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans. Med. Imaging. 35(5), 1344–1351 (2016). https://doi.org/10.1109/TMI.2016.2551324

    Article  Google Scholar 

  203. Palombo, M., Ianus, A., Guerreri, M., Nunes, D., Alexander, D.C., Shemesh, N., Zhang, H.: SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. NeuroImage. 215, 116835 (2020). https://doi.org/10.1016/j.neuroimage.2020.116835

    Article  Google Scholar 

  204. Dyrby, T.B., Innocenti, G.M., Bech, M., Lundell, H.: Validation strategies for the interpretation of microstructure imaging using diffusion MRI. NeuroImage. 182, 62–79 (2018). https://doi.org/10.1016/j.neuroimage.2018.06.049

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wu, D., Mori, S. (2023). Structural Neuroimaging: From Macroscopic to Microscopic Scales. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_84

Download citation

Publish with us

Policies and ethics

Navigation