The Development of Ground-Based Gamma-Ray Astronomy: A Historical Overview of the Pioneering Experiments

  • Living reference work entry
  • First Online:
Handbook of X-ray and Gamma-ray Astrophysics
  • 54 Accesses

Abstract

The ground-based technique for imaging atmospheric Cherenkov telescopes became a rapidly develo** and powerful branch of science. Thanks to this technique, over 250 very high-energy gamma-ray sources of galactic and extragalactic origin have been discovered. Many fundamental questions of astrophysics, astro-particle physics, the physics of cosmic rays, and cosmology are the focus of this technique. In the past 33 years since the discovery of the first gamma-ray source, the Crab Nebula, the discipline has made remarkable progress. Today, the technology boasts highly sensitive telescopes capable of detecting a point source 100 times fainter than the standard candle, the Crab Nebula, in 25 h of observation. Further developments in this technology led to the Cherenkov Telescope Array (CTA), the next-generation large instrument. The sensitivity of CTA will be several times higher than that of the current best instruments. This chapter presents a brief history of ground-based very high-energy gamma-ray astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • V.A. Acciari, S. Ansoldi, L.A. Antonelli, A. Arbet Engels, D. Baack, A. Babić, et al., Teraelectronvolt emission from the γ-ray burst GRB 190114C. Nature 575, 455–458 (2019)

    Article  ADS  Google Scholar 

  • V.A. Acciari, S. Ansoldi, L.A. Antonelli, A. Arbet Engels, K. Asano, et al., Detection of the Geminga pulsar with MAGIC hints at a power-law tail emission beyond 15 GeV. A&A 643, L14 (2020)

    Article  ADS  Google Scholar 

  • B.S. Acharya, M. Actis, T. Aghajani, et al., Introducing the CTA concept. Astropart. Phys. 43, 3–18 (2013)

    Article  ADS  Google Scholar 

  • C.B. Adams, R. Alfaro, G. Ambrosi, et al., Detection of the Crab Nebula with the 9.7 m prototype Schwarzschild-Couder telescope. Astropart. Phys. 128, 102562 (2021)

    Article  Google Scholar 

  • F.A. Aharonian, A.G. Akhperjanian, A.M. Atoyan, A.S. Beglarian, A.A. Gabrielian, R.S. Kankanian, P.M. Kazarian, R.G. Mirzoyan, A.A. Stepanian, Proc. Int. Workshop VHE Gamma-Ray Astron., Crimea, USSR, April 17–21, ed. by Stepanian, Fegan, Cawley (1989)

    Google Scholar 

  • F.A. Aharonian, A.A. Chilingaryan, R.G. Mirzoyan, A.K. Konopelko, A.V. Plyasheshnikov, Exp. Astron. 2, 331 (1993)

    Article  ADS  Google Scholar 

  • F. Aharonian, Q.A. Axikegu, L.X. Bai, et al., Construction and on-site performance of the LHAASO WFCTA camera. Eur. Phys. J.C 81, 657 (2021)

    Article  ADS  Google Scholar 

  • J. Aleksić, E.A. Alvarez, L.A. Antonelli, P. Antoranz, M. Asensio, et al., Phase-resolved energy spectra of the Crab pulsar in the range of 50–400 GeV measured with the MAGIC telescopes. A&A 540, A69 (2012)

    Article  ADS  Google Scholar 

  • E. Aliu, H. Anderhub, L.A. Antonelli, P. Antoranz, M. Backes, et al., Observation of pulsed γ-rays above 25 GeV from the crab pulsar with MAGIC. Science 322, 1221 (2008)

    Article  ADS  Google Scholar 

  • E. Aliu, E. Anderhub, L.A. Antonelli, P. Antoranz, et al., Improving the performance of the single-dish Cherenkov telescope MAGIC through the use of signal timing. Astropart. Phys. 30, 293 (2009)

    Article  ADS  Google Scholar 

  • F. Arqueros et al., Astropart. Phys. 3, 293 (2002)

    Article  ADS  Google Scholar 

  • P. Baillon et al., Astropart. Phys. 1, 341 (1993)

    Article  ADS  Google Scholar 

  • A. Barrau, R. Bazer-Bachi, E. Beyer, et al., Nucl. Instr. Meth. A 416, 278 (1998)

    Article  ADS  Google Scholar 

  • B. Bartoli, D. Bastieri, C. Bigongari, et al., Observation of γ-sources using a new reconstruction technique in the CLUE experiment. Nucl. Phys. B 97, 211 (2001)

    Article  Google Scholar 

  • P.M.S. Blackett, Rep. Conf. Gassiot Comm. Phys. Soc., Emission Spectra of the Night Sky and Aurorae, vol 34 (Physical Society, London, 1948)

    Google Scholar 

  • M. Blank, M. Tluczykont, A. Porelli, et al., Detection of the Crab Nebula using a random forest analysis of the first TAIGA IACT Data. ar**v:2301.11002v1, accepted for publication in MNRAS (2023)

    Google Scholar 

  • C. Borwankara, M. Sharmaa, N. Bhatta, S. Bhattacharyyaa, R.C. Rannot, A.K. Tickooa, Estimation of expected performance for the MACE γ-ray telescope in low zenith angle range. Nucl. Inst. Meth. Phys. A 953, 163182 (2020)

    Article  Google Scholar 

  • S.M. Bradbury, et al., Proceedings of the International Workshop “Towards a Major Atmospheric Cherenkov Detector-IV”, Padova, Italy, Sept. 11–13, 1995, ed. by Cresti, p. 277 (1995)

    Google Scholar 

  • C. Brink, B.C. Raubenheimer, G. Van Urk, D.J. van der Walt, O.C. De Jager, et al., The Nooitgedacht Mk II TeV gamma ray telescope, in Proceedings of the 22nd ICRC, Dublin, OG 10.3.9 (1991), p. 622

    Google Scholar 

  • N. Budnev, N. Astapov, I. Bezyazeekov, et al., TAIGA – an innovative hybrid array for high energy gamma astronomy, cosmic ray physics and astroparticle physics, SSN 1063-7788. Phys. At. Nucl. 84(3), 362–367 (2021) c© Pleiades Publishing, Ltd., 2021

    Article  Google Scholar 

  • Z. Cao, F.A. Aharonian, Q. An, et al., Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 594, 33 (2021)

    Article  ADS  Google Scholar 

  • P.M. Chadwick, 35 years of ground-based gamma-ray astronomy. Universe 7, 432 (2021)

    Article  ADS  Google Scholar 

  • P.M. Chadwick, T.J.L. McComb, K.E. Turver, Very high energy gamma rays from x-ray binary pulsars. J. Phys. G: Nucl. Part. Phys. 16, 1773–1803 (1990)

    Article  ADS  Google Scholar 

  • P.M. Chadwick, K. Lyons, T.J.L. McComb, K.J. Orford, J.L. Osborne, et al., Astrophys. J. 513, 161 (1999)

    Article  ADS  Google Scholar 

  • P.A. Cherenkov, Dokl. Akad. Nauk SSSR 2, 451 (1934)

    Google Scholar 

  • P.A. Cherenkov, Phys. Rev. 52, 378 (1937)

    Article  ADS  Google Scholar 

  • A.E. Chudakov, V.L. Dadykin, V.I. Zatsepin, N.M. Nesterova, Soviet Trudi FIAN Acad. Sci. XXVI, 118–141 (1964); Transl. Consultants Bureau, P.N. Lebedev Phys. Inst. 26, 99 (1965)

    Google Scholar 

  • G. Cocconi, Proc. Int. Cos. Ray Conf. Moscow 2, 309 (1960)

    Google Scholar 

  • CTA-Webpage: https://www.cta-observatory.org/

  • E. Curie, Madame Curie (London, 1941). https://archive.org/details/madamecurie035051mbp

  • M. De Naurois, J. Holder, R. Bazer-Bachi, et al., (CELESTE Collab.), Astrophys. J., 566, 343 (2002)

    Google Scholar 

  • G.G. Fazio, H.F. Helmken, G.H. Rieke, T.C. Weekes, Can. J. Phys. 46, 451 (1968a)

    Article  Google Scholar 

  • G.G. Fazio, H.F. Helmken, G.H. Rieke, T.C. Weekes, Astrophys. J. 154, L83 (1968b)

    Article  ADS  Google Scholar 

  • D. Fegan, Detection of elusive radio and optical emission from cosmic-ray showers in the 1960s. Nucl. Instr. Meth. Phys. A 662, S2 (2012).; also at ar**v:1104.2403v1

    Article  ADS  Google Scholar 

  • D. Fegan, Cherenkov Reflections: Gamma-Ray Imaging and the Evolution of TeV Astronomy (World Scientific, Singapore, 2019)

    Book  Google Scholar 

  • A. Förster, Gamma-ray astronomy with H.E.S.S. Nucl. Inst. Meth. A 766, 69 (2014)

    Article  ADS  Google Scholar 

  • W. Galbraith, J.V. Jelley, Nature 171, 349 (1953)

    Article  ADS  Google Scholar 

  • P. Goret, T. Palfrey, A. Tabary, et al., A&A 270, 401 (1993)

    ADS  Google Scholar 

  • O. Gress, I. Astapov, Budnev, et al., The wide-aperture gamma-ray telescope TAIGA-HiSCORE in the Tunka Valley: design, composition and commissioning. Nucl. Instr. Meth. Phys. A 845, 367 (2017)

    Article  ADS  Google Scholar 

  • J.E. Grindlay, Detection of pulsed gamma rays of ∼1012 eV from the pulsar in the Crab Nebula. Astrophys. J. 174, L9 (1972)

    Article  ADS  Google Scholar 

  • J.E. Grindlay, A.F. Helmken, R. Hanbury Brown, J. Davis, L.R. Allen, Results of a southern-hemisphere search for gamma ray sources at Eγ ≥ 3x1011 eV. Astrophys. J. 201, 82 (1975)

    Article  ADS  Google Scholar 

  • H.E.S.S. Collaboration, The H.E.S.S. Galactic plane survay. A&A 612, A1 (2018)

    Article  ADS  Google Scholar 

  • A. Hahn, R. Mirzoyan, A. Dettlaff, et al., Performance evaluation of three silicon photomultiplier detector modules within the MAGIC telescopes PMT-based camera. Nucl. Instr. Meth. Phys. Res. A 1046, 167686 (2023)

    Article  Google Scholar 

  • R. Hanbury Brown, J. Davis, L.R. Allen, Mon. Not. Roy. Astr. Soc. 146, 399 (1969)

    Article  ADS  Google Scholar 

  • O. Heaviside, Philos. Mag. S5(27), 324 (1889)

    Article  Google Scholar 

  • D.A. Hill, N.A. Porter, Nature 191, 690 (1960)

    Article  Google Scholar 

  • A.M. Hillas, Proc. 18th ICRC, vol. 3 (1985), p. 445

    Google Scholar 

  • A.M. Hillas, Astrop. Phys. 43, 19 (2013)

    Article  ADS  Google Scholar 

  • A. Jarvis, R.A. Ong, D.A. Williams, T. Aune, J. Ball, J.E. Carson, C.E. Covault, D.D. Driscoll, P. Fortin, D.M. Gingrich, D.S. Hanna, J. Kildea, T. Lindner, R. Mukherjee, C. Mueller, K. Ragan, J. Zweerink, Very high energy observations of gamma-ray bursts with STACEE. Astrophys. J. 722, 862–870 (2010)

    Article  ADS  Google Scholar 

  • J.V. Jelley, Cherenkov Radiation and Its Applications (Pergamon Press, 1958)

    MATH  Google Scholar 

  • J.V. Jelley, Proc. Int. Workshop on Very High Energy Gamma Ray Astronomy, Ootacamund, India (1982), p. 64

    Google Scholar 

  • D.M. Jennings, G. White, N.A. Porter, E.P. O’Mongain, D.J. Fegan, J. White, IL Nuovo Cimento 20 B(N1), 71 (1974)

    Article  ADS  Google Scholar 

  • A. Karle, M. Merck, R. Plaga, et al., Design and performance of the angle integrating Cerenkov array AIROBICC. Astropart. Phys. 3, 321 (1995)

    Article  ADS  Google Scholar 

  • A.P. Kornienko, A.A. Stepanian, Y.L. Zyskin, et al., Exp. Astron. 4, 77 (1993)

    Article  ADS  Google Scholar 

  • R. Koul, A.K. Tickoo, S.K. Kaul, S.R. Kaul, N. Kumar, Nucl. Instr. Meth. Phys. A 578, 548 (2007)

    Article  ADS  Google Scholar 

  • A.S. Lidvansky, Radiat. Phys. Chem. 75, 891–898 (2006)

    Google Scholar 

  • S. Lombardi, O. Catalano, S. Scuderi, et al., First detection of the Crab Nebula at TeV energies with a Cherenkov telescope in a dual-mirror Schwarzschild-Couder configuration: the ASTRI-Horn telescope. A&A 634, A22 (2020)

    Article  ADS  Google Scholar 

  • E. Lorenz, R. Wagner, Eur. Phys. J. H 37, 459 (2012)

    Article  Google Scholar 

  • E. Lorenz, et al., Proc. TAUP 95, Toledo, Spain (1995)

    Google Scholar 

  • MAGIC Collaboration, Observation of inverse Compton emission from a long γ-ray burst. Nature 575, 459–463 (2019)

    Article  ADS  Google Scholar 

  • L. Malet, C.R. Acad. Sci. (Paris) 183, 274 (1926)

    Google Scholar 

  • L. Malet, C.R. Acad. Sci. (Paris) 187, 222 (1928)

    Google Scholar 

  • L. Malet, C.R. Acad. Sci. (Paris) 188, 445 (1929)

    Google Scholar 

  • R. Mirzoyan, (HEGRA Collab.), in “Towards a Major Atmospheric Cherenkov Detector”, Palaiseau, France, June 11–12, 1992, ed. by Fleury, Vacanti (1992), 239 p.

    Google Scholar 

  • R. Mirzoyan, “Towards a Major Atmospheric Cherenkov Detector-V”, Krueger Nat. Park, South Africa, August 8–11, 1997, ed. by De Jager (1997a), p. 298

    Google Scholar 

  • R. Mirzoyan, 17m Diameter MAGIC telescope project for sub-100 GeV gamma ray astronomy. Nucl. Phys. B 54, 350 (1997b)

    Article  Google Scholar 

  • R. Mirzoyan, The history of ground-based very high energy gamma-ray astrophysics with the atmospheric air Cherenkov telescope technique. Nucl. Phys. B 6, 239 (2013)

    Google Scholar 

  • R. Mirzoyan, Brief history of ground-based very high energy gamma-ray astrophysics with atmospheric air Cherenkov telescopes. Astropart. Phys. 53, 91 (2014)

    Article  ADS  Google Scholar 

  • R. Mirzoyan, Technological novelties of ground-based very high energy gamma-ray astrophysics with the imaging atmospheric Cherenkov telescopes. Universe 8(4), 219 (2022). https://doi.org/10.3390/universe8040219

    Article  ADS  Google Scholar 

  • R. Mirzoyan, M.I. Andersen, A 15° wide field of view imaging air Cherenkov telescope. Astropart. Phys. 31, 1 (2009)

    Article  ADS  Google Scholar 

  • R. Mirzoyan, U. Habel, Y. Neshpor, V. Vladimirsky, The efficiency of light guide application in imaging cameras of the 2-nd generation gamma-ray Cherenkov telescopes. Exp. Astron. 4, 137 (1993)

    Article  ADS  Google Scholar 

  • R. Mirzoyan, R. Kankanian, F. Krennrich, et al., Nucl. Instr. Meth. Phys. A 351, 513 (1994)

    Article  ADS  Google Scholar 

  • R. Mirzoyan, E. Lorenz, D. Petry, C. Prosch, On the influence of afterpulsing in PMTs on the trigger threshold of multichannel light detectors in self-trigger mode. Nucl. Instr. Meth. Phys. A 387, 74 (1997)

    Article  ADS  Google Scholar 

  • R. Mirzoyan, D. Mueller, J. Hose, U. Menzel, D. Nakajima, M. Takahashi, M. Teshima, T. Toyamam, T. Yamamoto, Evaluation of novel PMTs of worldwide best parameters for the CTA project. Nucl. Inst. Meth. Phys. A 845, 603 (2017)

    Article  ADS  Google Scholar 

  • M. Mori, Int. Workshop “Cosmic-rays and High Energy Universe”, Aoyama Gakuin Univ., Shibuya, Tokyo, Japan, March 5–6, 2007, by ed. Shibara, Sakaki. (Univ. Acad. Press, Tokyo, 2007), p. 93

    Google Scholar 

  • R. Mukherjee, for the VERITAS Collaboration, Observing the energetic universe at very high energies with the VERITAS gamma ray observatory. Adv. Space Res. 62, 2828 (2018)

    Article  ADS  Google Scholar 

  • D. Neise, J. Adam, M.L. Ahnen, D. Baack, M. Balbo, M. Bergmannd, A. Biland, FACT–Status and experience from five years of operation of the first G-APD Cherenkov Telescope. Nucl. Instr. Meth. Phys. A 876, 17 (2017)

    Article  ADS  Google Scholar 

  • R. Plaga, Proc. 17th ECRC 178 (2000)

    Google Scholar 

  • G. Pühlhofer, O. Bolz, N. Götting, A. Heusler, D. Horns, A. Kohnle, et al., The technical performance of the HEGRA system of imaging air Cherenkov telescopes. Astropart. Phys. 20, 267 (2003)

    Article  ADS  Google Scholar 

  • L.K. Resvanis, S. Tzamarias, G. Voulgaris, et al., The Haleakala gamma-ray observatory. Nucl. Instr. Meth. Phys. A 269, 297 (1988)

    Article  ADS  Google Scholar 

  • A. Schliesser, R. Mirzoyan, Wide-field prime-focus imaging atmospheric Cherenkov telescopes. A systematic study. Astropart. Phys. 24, 382 (2005)

    Article  ADS  Google Scholar 

  • S. Scuderi, A. Giuliani, G. Paresci, et al., The ASTRI Mini-Array of Cherenkov telescopes at the Observatorio del Teide. J. High Ener. Astrophys. 35, 52 (2022)

    Article  ADS  Google Scholar 

  • B.B. Singh, V.R. Chitnis, D. Bose, M.A. Rahman, S.S. Upadhya, K.S. Gothe, B.K. Nagesh, P.N. Purohit, et al., Search for TeV gamma-rays from Geminga pulsar. Astropart. Phys. 32, 120 (2009)

    Article  ADS  Google Scholar 

  • B.B. Singh, R.J. Britto, V.R. Chitnis, et al., VHE gamma-ray observation of Crab Nebula with HAGAR telescope array. Exp. Astron. 47, 177 (2019)

    Article  ADS  Google Scholar 

  • V.G. Sinitsyna, S.I. Nikolsky, A.Y. Alaverdian, S.P. Vorobiov, S.B. Matiazov, G.F. Platonov, in Proc. 24th ICRC, ed. by N. Iucci, E. Lamanna, vol. 2 (1995), p. 334

    Google Scholar 

  • D.A. Smith, ar**v:astro-ph/0608251v1 (2006)

    Google Scholar 

  • A. Sommerfeld, Goettingen Nachr 99, 363 (1904). 201 (1905). Stable: https://www.jstor.org/stable/37067

    Google Scholar 

  • I.E. Tamm, I.M. Frank, Dokl. Akad. Nauk SSSR 14, 109 (1937)

    Google Scholar 

  • M. Teshima, G. Dion, N. Hayashida, et al., in “Towards a Major Atmospheric Cherenkov Detector”, Palaiseau, France, June 11–12, 1992, ed. by Fleury, Vacanti (1992), p. 255

    Google Scholar 

  • TeVCat: http://tevcat.uchicago.edu/

  • The CTA Consortium, Science with the Cherenkov Telescope Array (World Scientific, Singapore, 2017)

    Google Scholar 

  • “Towards a Major Atmospheric Cherenkov Detector-I”, Proc. Int. Workshop, Palaiseau, France, June 11–12, 1992, ed. by Fleury, Vacanti (1992)

    Google Scholar 

  • “Towards a Major Atmospheric Cherenkov Detector-II”, Proc. Int. Workshop, Calgary, Canada, July 17–18, 1993, ed. by R.C. Lamb (1993)

    Google Scholar 

  • “Towards a Major Atmospheric Cherenkov Detector-III”, Proc. Int. Workshop, Tokyo, Japan, May 25–27, 1994, ed. by T. Kifune (Universal Academy Press, Tokyo, 1994), 372 p.

    Google Scholar 

  • “Towards a Major Atmospheric Cherenkov Detector-IV”, Proc. Int. Workshop, Padua, Italy, September 13–15, 1995, ed. by M. Cresti (1995)

    Google Scholar 

  • “Towards a Major Atmospheric Cherenkov Detector-V”, Proc. Int. Workshop, Krueger Nat. Park, South Africa, August 8–11, 1997, ed. by De Jager (1997)

    Google Scholar 

  • “Towards a Major Atmospheric Cherenkov Detector-VI”, Proc. Int. Workshop, 6th Workshop on GeV-TeV Gamma-ray Astrophysics, Snowbird 1999, USA, August 13–16 (1999)

    Google Scholar 

  • “Towards a Network of Atmospheric Cherenkov Detectors-VII”, Proc. Int. Workshop, École Polytechnique, Palaiseau (France), April 27–29 2005, ed. by B. Degrange, G. Fontaine (2005), 618 p., RN:38041667

    Google Scholar 

  • K.E. Turver, T.C. Weekes, Phil. Trans. R. Soc. Lond. A 301, 615 (1981a)

    Article  ADS  Google Scholar 

  • K.E. Turver, T.C. Weekes, Gamma-rays above 100 GeV. Phil. Trans. Roy. Soc. London, A, Math. Phys. Sci. 301(1462, Gamma-ray Astronomy), 615–628 (1981b)

    Article  ADS  Google Scholar 

  • V.V. Vassiliev, S. Fegan, P. Brousseau, Wide field aplantic two mirror telescopes for ground-based gamma-ray astronomy. Astropart. Phys. 28, 10 (2007)

    Article  ADS  Google Scholar 

  • S.I. Vavilov, Dokl. Akad. Nauk SSSR 2, 457 (1934)

    Google Scholar 

  • A. Watson, The discovery of Cherenkov radiation and its use in the detection of extensive air showers. Nucl. Phys. B 212–213, 13 (2011).; also at ar**v:1101.4535

    Article  Google Scholar 

  • T.C. Weekes, Very High Energy Gamma-Ray Astronomy, Series in Astronomy and Astrophysics (CRC Press, 2003) ISBN-10: 0750306580

    Book  Google Scholar 

  • T.C. Weekes, K.E. Turver, Proc. 12th ESLAB Symp. (Frascati), ed. by R.D. Wills, B. Battrick, ESA SP124 (1977), p. 279

    Google Scholar 

  • T.C. Weekes, M.F. Cawley, D.J. Fegan, et al., Astrophys. J. 342, 379 (1989)

    Article  ADS  Google Scholar 

  • V.I. Zatsepin, Soviet Phys. JETF 47, 689 (1964).; (Eng.:) Soviet Phys. JETF, 20, 2 (1965) 459

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razmik Mirzoyan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mirzoyan, R. (2023). The Development of Ground-Based Gamma-Ray Astronomy: A Historical Overview of the Pioneering Experiments. In: Bambi, C., Santangelo, A. (eds) Handbook of X-ray and Gamma-ray Astrophysics. Springer, Singapore. https://doi.org/10.1007/978-981-16-4544-0_62-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4544-0_62-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4544-0

  • Online ISBN: 978-981-16-4544-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation