Advances in Biological Nitrogen Removal

  • Chapter
  • First Online:
Innovations in Environmental Biotechnology

Abstract

Inefficient nitrogen removal during wastewater treatment is undesirable as it affects human health adversely and causes eutrophication triggered oxygen depletion in the receiving water bodies. The main conversion pathway (aerobic autotrophic nitrification followed by anoxic heterotrophic denitrification) in traditional aerobic treatment systems necessitates an additional anoxic unit process to meet the nitrogen discharge standards resulting in cost escalation and biomass acclimatization problems. The discovery of alternative nitrogen conversion routes like sulphur oxidizing autotrophic denitrification (SOAD), heterotrophic nitrification aerobic denitrification (HNAD), and ANAMMOX processes have opened unforeseen avenues that may contribute significantly to total nitrogen removal under specific environmental conditions. SOAD can carry out denitrification in carbon-limiting conditions utilizing reduced sulphur compounds as source of electrons and energy, with a concomitant reduction in the total greenhouse gas (N2O) emission. HNAD couples the reducing power generated during heterotrophic nitrification to aerobic denitrification in a single reactor and can convert nitrate nitrogen efficiently at low DO levels. ANAMMOX bacteria can anaerobically convert ammonium ion to nitrogen directly utilizing nitrite—generated either by nitritation or by coupled nitrification—partial denitrification. Suitable process controls allow generation of anoxic conditions in biofilms or fluidized systems of many existing aerobic technologies facilitating maintenance of ANAMMOX bacteria. These systems can potentially become energy self-sustainable by diverting the organic matter saved through reduced consumption in ANAMMOX process to methane generation. This chapter discusses some recent developments in the microbiology of such specialized bacteria and identifies their possible role in enhancing the performance of nitrogen removal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bednarek A, Szklarek S, Zalewski M (2014) Nitrogen pollution removal from areas of intensive farming—comparison of various denitrification biotechnologies. Ecohydrol Hydrobiol 14(2):132–141

    Article  Google Scholar 

  • Blackburne R, Yuan Z, Keller J (2008) Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation 19(2):303–312

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Kwok BH, Yong WH, Chua SC, Wah YL, Ghani YABD (2013) Mainstream partial nitritation-ANAMMOX nitrogen removal in the largest full-scale activated sludge process in Singapore: process analysis. In: Proc. WEF/IWA nutrient removal and recovery conference. Water Environment Federation, Richmond, VA, pp 28–31

    Google Scholar 

  • Cao Y, Hong KB, Zhou Y, Liu Y, Jianzhong H, Chye CS, Long WY, Ghani Y (2015) The mainstream partial nitritation/ANAMMOX nitrogen removal process in the largest water reclamation plant in Singapore. J Bei**g Univ Technol 41(10):1441

    CAS  Google Scholar 

  • Cao Y, van Loosdrecht MC, Daigger GT (2017) Mainstream partial nitritation-ANAMMOX in municipal wastewater treatment: status, bottlenecks, and further studies. Appl Microbiol Biotechnol 101(4):1365–1383

    Article  CAS  PubMed  Google Scholar 

  • Cardoso RB, Sierra-Alvarez R, Rowlette P, Flores ER, Gómez J, Field JA (2006) Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng 95(6):1148–1157

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Ni J (2012) Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification-aerobic denitrification. J Biosci Bioeng 113(5):619–623

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Wang W, Feng Y, Zhu X, Zhou H, Tan Z, Li X (2014) Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium Aeromonas sp. HN-02. Bioresour Technol 167:456–461

    Article  CAS  PubMed  Google Scholar 

  • Cui YX, Biswal BK, Guo G, Deng YF, Huang H, Chen GH, Wu D (2019) Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Appl Microbiol Biotechnol 103(15):6023–6039

    Article  CAS  PubMed  Google Scholar 

  • Damsté JSS, Strous M, Rijpstra WIC, Hopmans EC, Geenevasen JA, van Duin AC, Van Niftrik LA, Jetten MS (2002) Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419(6908):708–712

    Article  CAS  Google Scholar 

  • Du R, Peng Y, Ji J, Shi L, Gao R, Li X (2019) Partial denitrification providing nitrite: opportunities of extending application for ANAMMOX. Environ int 131:105001

    Article  CAS  PubMed  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors sha** the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33(5):855–869

    Article  CAS  PubMed  Google Scholar 

  • Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB, Petrescu AR, Leach AM, de Vries W (2013) Consequences of human modification of the global nitrogen cycle. Philos Trans R Soc B Biol Sci 368(1621):20130116

    Article  CAS  Google Scholar 

  • Fajardo C, Mora M, Fernández I, Mosquera-Corral A, Campos JL, Méndez R (2014) Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor. Chemosphere 97:10–15

    Article  CAS  PubMed  Google Scholar 

  • Francis CA, Beman JM, Kuypers MM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1(1):19–27

    Article  CAS  PubMed  Google Scholar 

  • Gadekar S, Nemati M, Hill GA (2006) Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO: reaction kinetics and stoichiometry. Water Res 40(12):2436–2446

    Article  CAS  PubMed  Google Scholar 

  • Ghafari S, Hasan M, Aroua MK (2008) Bio-electrochemical removal of nitrate from water and wastewater—a review. Bioresour Technol 99(10):3965–3974

    Article  CAS  PubMed  Google Scholar 

  • Goldstein DJ, Casana JG (1982) Municipal wastewater reuse in power plant cooling systems. In: Water reuse. Ann Arbor Science, Ann Arbor, MI, pp 431–464. 6 fig, 10 tab, 53 ref

    Google Scholar 

  • Gu JD, Qiu W, Koenig A, Fan Y (2004) Removal of high NO3- concentrations in saline water through autotrophic denitrification by the bacterium Thiobacillusdenitrificans strain MP. Water Sci Technol 49(5–6):105–112

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Yang Q, Liu Y (2018) A novel strategy towards sustainable and stable nitritation-denitritation in an AB process for mainstream municipal wastewater treatment. Chemosphere 193:921–927

    Article  CAS  PubMed  Google Scholar 

  • Guo G, Wang Y, Hao T, Wu D, Chen GH (2018) Enzymatic nitrous oxide emissions from wastewater treatment. Front Environ Sci Eng 12(1):10

    Article  CAS  Google Scholar 

  • Gupta AB, Gupta SK (1999) Simultaneous carbon and nitrogen removal in a mixed culture aerobic RBC biofilm. Water Res 33(2):555–561

    Article  CAS  Google Scholar 

  • Gupta SK, Gupta RC, Seth AK, Gupta AB, Bassin JK, Gupta A (1999a) Adaptation of cytochrome-b5 reductase activity and methaemoglobinaemia in areas with a high nitrate concentration in drinking-water. Bull World Health Organ 77(9):749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SK, Gupta RC, Seth AK, Gupta AB, Bassin JK, Gupta DK, Sharma S (1999b) Epidemiological evaluation of recurrent stomatitis, nitrates in drinking water, and cytochrome b5 reductase activity. Am J Gastroenterol 94(7):1808–1812

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Gupta RC, Gupta AB, Seth AK, Bassin JK, Gupta A (2000) Recurrent acute respiratory tract infections in areas with high nitrate concentrations in drinking water. Environ Health Perspect 108(4):363–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SK, Gupta RC, Gupta AB, Seth AK, Bassin JK, Gupta A, Sharma ML (2001) Recurrent diarrhea in children living in areas with high levels of nitrate in drinking water. Arch Environ Health 56(4):369–373

    Article  CAS  PubMed  Google Scholar 

  • Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500(7):567–570

    Article  CAS  PubMed  Google Scholar 

  • He T, Ye Q, Sun Q, Cai X, Ni J, Li Z, **e D (2018) Removal of nitrate in simulated water at low temperature by a novel psychrotrophic and aerobic bacterium, Pseudomonas taiwanensis Strain. J BioMed Res Int 2018:4984087

    Google Scholar 

  • Henze M (1991) Capabilities of biological nitrogen removal processes from wastewater. Water Sci Technol 23(4–6):669–679

    Article  CAS  Google Scholar 

  • Hocaoglu SM, Insel G, Cokgor EU, Orhon D (2011) Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water. Bioresour Technol 102(6):4333–4340

    Article  CAS  PubMed  Google Scholar 

  • Huang HK, Tseng SK (2001) Nitrate reduction by Citrobacter diversus under aerobic environment. Appl Microbiol Biotechnol 55(1):90–94

    Article  CAS  PubMed  Google Scholar 

  • Jetten MS, Horn SJ, van Loosdrecht MC (1997) Towards a more sustainable municipal wastewater treatment system. Water Sci Technol 35(9):171–180

    Article  CAS  Google Scholar 

  • Joo HS, Hirai M, Shoda M (2006) Piggery wastewater treatment using Alcaligenesfaecalis strain No. 4 with heterotrophic nitrification and aerobic denitrification. Water Res 40(16):3029–3036

    Article  CAS  PubMed  Google Scholar 

  • Kartal B, Kuenen JV, Van Loosdrecht MCM (2010) Sewage treatment with ANAMMOX. Science 328(5979):702–703

    Article  CAS  PubMed  Google Scholar 

  • Koenig A, Liu L (2004) Autotrophic denitrification of high-salinity wastewater using elemental sulfur: batch tests. Water Environ Res 76(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Kornaros MSND, Dokianakis SN, Lyberatos G (2010) Partial nitrification/denitrification can be attributed to the slow response of nitrite oxidizing bacteria to periodic anoxic disturbances. Environ Sci Technol 44(19):7245–7253

    Article  CAS  PubMed  Google Scholar 

  • Kuypers MM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16(5):263

    Article  CAS  PubMed  Google Scholar 

  • Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MC (2014) Full-scale partial nitritation/ANAMMOX experiences-an application survey. Water Res 55:292–303

    Article  CAS  PubMed  Google Scholar 

  • Le T, Peng B, Su C, Massoudieh A, Torrents A, Al-Omari A, Murthy S, Wett B, Chandran K, DeBarbadillo C, Bott C (2019) Impact of carbon source and COD/N on the concurrent operation of partial denitrification and ANAMMOX. Water Environ Res 91(3):185–197

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang L, Pang L (2018) Application of a novel strain Corynebacteriumpollutisoli SPH6 to improve nitrogen removal in an anaerobic/aerobic-moving bed biofilm reactor (A/O-MBBR). Bioresour Technol 269:113–120

    Article  CAS  PubMed  Google Scholar 

  • Lotti T, Van der Star WRL, Kleerebezem R, Lubello C, Van Loosdrecht MCM (2012) The effect of nitrite inhibition on the ANAMMOX process. Water Res 46(8):2559–2569

    Article  CAS  PubMed  Google Scholar 

  • Lotti T, Kleerebezem R, Abelleira-Pereira JM, Abbas B, Van Loosdrecht MCM (2015) Faster through training: the ANAMMOX case. Water Res 81:261–268

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Wang S, Cao S, Miao Y, Jia F, Du R, Peng Y (2016) Biological nitrogen removal from sewage via ANAMMOX: recent advances. Bioresour Technol 200:981–990

    Article  CAS  PubMed  Google Scholar 

  • Manconi I, Alessandra C, Lens P (2007) Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system. Biotechnol Bioeng 98(3):551–560

    Article  CAS  PubMed  Google Scholar 

  • Massara TM, Malamis S, Guisasola A, Baeza JA, Noutsopoulos C, Katsou E (2017) A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci Total Environ 596:106–123

    Article  PubMed  CAS  Google Scholar 

  • Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO 2 greenhouse gases and climate change. Nature 476(7358):43–50

    Article  CAS  PubMed  Google Scholar 

  • Morales N, del Río ÁV, Vázquez-Padín JR, Méndez R, Mosquera-Corral A, Campos JL (2015) Integration of the ANAMMOX process to the rejection water and main stream lines of WWTPs. Chemosphere 140:99–105

    Article  CAS  PubMed  Google Scholar 

  • Offre P, Spang A, Schleper C (2013) Archaeainbiogeochemical cycles. Annu Rev Microbiol 67:437–457

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Ni BJ, Bond PL, Ye L, Yuan Z (2013) Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Res 47(10):3273–3281

    Article  CAS  PubMed  Google Scholar 

  • Patureau D, Bernet N, Moletta R (1997) Combined nitrification and denitrification in a single aerated reactor using the aerobic denitrifier Commonas sp. strain SGLY2. Water Res 31(6):1363–1370

    Article  CAS  Google Scholar 

  • Philippot L (2002) Denitrifying genes in bacterial and archaeal genomes. Biochim Biophys Acta Gene Struct Exp 1577(3):355–376

    Article  CAS  Google Scholar 

  • Qing H, Donde OO, Tian C, Wang C, Wu X, Feng S, Liu Y, **ao B (2018) Novel heterotrophic nitrogen removal and assimilation characteristic of the newly isolated bacterium Pseudomonas stutzeri AD-1. J Biosci Bioeng 126(3):339–345

    Article  CAS  PubMed  Google Scholar 

  • Rajta A, Bhatia R, Setia H, Pathania P (2020) Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. J Appl Microbiol 128(5):1261–1278

    Article  CAS  PubMed  Google Scholar 

  • Rittmann BE, McCarty PL (2012) Environmental biotechnology: principles and applications. Tata McGraw-Hill Education, New York, NY

    Google Scholar 

  • Robertson LA, Kuenen JG, Kleijntjens R (1985) Aerobic denitrification and heterotrophic nitrification by Thiosphaerapantotropha. Antonie Van Leeuwenhoek 51(4):445–445

    Article  Google Scholar 

  • Schmidt I, Sliekers O, Schmid M, Bock E, Fuerst J, Kuenen JG, Jetten MS, Strous M (2003) New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol Rev 27(4):481–492

    Article  CAS  PubMed  Google Scholar 

  • Seifi M, Fazaelipoor MH (2012) Modeling simultaneous nitrification and denitrification (SND) in a fluidized bed biofilm reactor. Appl Math Model 36(11):5603–5613

    Article  Google Scholar 

  • Shao MF, Zhang T, Fang HHP (2010) Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol 88(5):1027–1042

    Article  CAS  PubMed  Google Scholar 

  • Sheik AR, Muller EE, Wilmes P (2014) A hundred years of activated sludge: time for a rethink. Front Microbiol 5:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegrist H, Salzgeber D, Eugster J, Joss A (2008) ANAMMOX brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Sci Technol 57(3):383–388

    Article  CAS  PubMed  Google Scholar 

  • Takenaka S, Zhou Q, Kuntiya A, Seesuriyachan P, Murakami S, Aoki K (2007) Isolation and characterization of thermotolerant bacterium utilizing ammonium and nitrate ions under aerobic conditions. Biotechnol Lett 29(3):385–390

    Article  CAS  PubMed  Google Scholar 

  • Van Maanen JMS, Welle IJ, Hageman G, Dallinga JW, Mertens PLJM, Kleinjans JCS (1996) Nitrate contamination of drinking water: relationship with HPTR variant frequency in lymphocyte DNA and urinary excretion of N-nitrosamines. Environ Health Perspect 104:522–528

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Peng Y, Ma B, Wang S, Zhu G (2015) Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: widespread but overlooked. Water Res 84:66–75

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Huang BC, Li J, ** RC (2020) Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal. Chin Chem Lett 31:2567

    Article  CAS  Google Scholar 

  • Wellman TP, Rupert MG (2016) Groundwater quality, age, and susceptibility and vulnerability to nitrate contamination with linkages to land use and groundwater flow, Upper Black Squirrel Creek Basin, Colorado, 2013 (No. 2016-5020). US Geological Survey, Washington, DC

    Google Scholar 

  • Wett B, Podmirseg SM, Gómez-Brandón M, Hell M, Nyhuis G, Bott C, Murthy S (2015) Expanding DEMON sidestreamdeammonification technology towards mainstream application. Water Environ Res 87(12):2084–2089

    Article  CAS  PubMed  Google Scholar 

  • Weyer PJ, Cerhan JR, Kross BC, Hallberg GR, Kantamneni J, Breuer G, Jones MP, Zheng W, Lynch CF (2001) Municipal drinking water nitrate level and cancer risk in older women: the Iowa Women’s Health Study. Epidemiology 12:327–338

    Article  CAS  PubMed  Google Scholar 

  • Wilson LP, Bouwer EJ (1997) Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review. J Ind Microbiol Biotechnol 18(2–3):116–130

    Article  CAS  PubMed  Google Scholar 

  • Winkler MK, Straka L (2019) New directions in biological nitrogen removal and recovery from wastewater. Curr Opin Biotechnol 57:50–55

    Article  CAS  PubMed  Google Scholar 

  • Winkler MK, Kleerebezem R, Van Loosdrecht MCM (2012) Integration of ANAMMOX into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures. Water Res 46(1):136–144

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Zhou Y, Yang Q, Lee ZMP, Gu J, Lay W, Cao Y, Liu Y (2015) The challenges of mainstream deammonification process for municipal used water treatment. Appl Microbiol Biotechnol 99(6):2485–2490

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Lu H, Khanal SK, Zhao Q, Meng L, Chen GH (2016) Granulation of sulfur-oxidizing bacteria for autotrophic denitrification. Water Res 104:507–519

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Feng L, Pi S, Cui D, Ma F, Zhao HP, Li A (2020) A critical review of aerobic denitrification: insights into the intracellular electron transfer. Sci Total Environ 731:139080

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Bi X, Xu C (2018) Ammonia-oxidizing archaea (AOA) play with ammonia-oxidizing bacteria (AOB) in nitrogen removal from wastewater. Archaea 2018:8429145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu G, Peng Y, Li B, Guo J, Yang Q, Wang S (2008) Biological removal of nitrogen from wastewater. In: Reviews of environcontamination and toxicol. Springer, New York, NY, pp 159–195

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilendra Bhushan Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulshreshtha, N.M., Rampuria, A., Gupta, A.B. (2022). Advances in Biological Nitrogen Removal. In: Arora, S., Kumar, A., Ogita, S., Yau, Y.Y. (eds) Innovations in Environmental Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4445-0_11

Download citation

Publish with us

Policies and ethics

Navigation