Removal of Contaminants by Modified Biochar-Based Material

  • Chapter
  • First Online:
Biochar and its Application in Bioremediation

Abstract

Biochar (BC) is a low-cost sustainable adsorption material. Due to its broad application prospects, it has attracted a lot of research attention recently. Having several functional groups available on the surface, biochar treated by several methods can be modified and used as a catalyst or catalyst support. Functional groups attached to the surface of biochar can trigger active free radical species to play an important role, thereby causing destruction of pollutants as catalysts and removal of adsorbents by involving electron transfer or redox processes. Biochar-based materials can be used to remove inorganic contaminants, such as heavy metal, nitrate or phosphate. Biochar-based materials can also be used to repair eutrophic water by releasing compounds containing N or P. This chapter reviews more feasible and sustainable biochar-based materials, which effectively remove environmental pollutants as catalysts or carriers, and discusses the use of biochar-based materials as catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Fattah TM, Mahmoud ME, Ahmed SB, Huff MD, Lee JW, Kumar S (2015) Biochar from woody biomass for removing metal contaminants and carbon sequestration. J Ind Eng Chem 22:103–109

    Article  CAS  Google Scholar 

  • Ahmad M, Lee SS, Dou X, Mohan D, Sung JK, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544

    Article  CAS  Google Scholar 

  • Ahmad M, Lee SS, Rajapaksha AU, Vithanage M, Zhang M, Cho JS et al (2013) Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour Technol 143:615–622

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Alshameri A, He H, Zhu J, ** Y, Zhu R, Ma L, Tao Q (2018) Adsorption of ammonium by different natural clay minerals: characterization, kinetics and adsorption isotherms. Appl Clay Sci 159:83–93

    Article  CAS  Google Scholar 

  • Angar Y, Djelali NE, Kebbouche-Gana S (2017) Investigation of ammonium adsorption on Algerian natural bentonite. Environ Sci Pollut Res 24(12):11078–11089

    Article  CAS  Google Scholar 

  • Bernardo M, Mendes S, Lapa N, Gonçalves M, Mendes B, Pinto F et al (2013) Removal of lead (Pb2+) from aqueous medium by using chars from co-pyrolysis. J Colloid Interface Sci 409:158–165

    Article  CAS  Google Scholar 

  • Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43(9):3285–3291

    Article  CAS  Google Scholar 

  • Cao Y, **ao W, Shen G, Ji G, Zhang Y, Gao C, Han L (2019) Carbonization and ball milling on the enhancement of Pb (II) adsorption by wheat straw: competitive effects of ion exchange and precipitation. Bioresour Technol 273:70–76

    Article  CAS  Google Scholar 

  • Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42(14):5137–5143

    Article  CAS  Google Scholar 

  • Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102(19):8877–8884

    Article  CAS  Google Scholar 

  • Chen Z, Chen B, Chiou CT (2012a) Fast and slow rates of naphthalene sorption to biochars produced at different temperatures. Environ Sci Technol 46(20):11104–11111

    Article  CAS  Google Scholar 

  • Chen Z, Chen B, Zhou D, Chen W (2012b) Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures. Environ Sci Technol 46(22):12476–12483

    Article  CAS  Google Scholar 

  • Chintala R, Mollinedo J, Schumacher TE, Papiernik SK, Malo DD, Clay DE et al (2013) Nitrate sorption and desorption in biochars from fast pyrolysis. Microporous Mesoporous Mater 179:250–257

    Article  CAS  Google Scholar 

  • Cui X, Hao H, He Z, Stoffella PJ, Yang X (2016) Pyrolysis of wetland biomass waste: potential for carbon sequestration and water remediation. J Environ Manag 173:95–104

    Article  CAS  Google Scholar 

  • Dai Y, Li J, Shan D (2020) Adsorption of tetracycline in aqueous solution by biochar derived from waste Auricularia auricula dregs. Chemosphere 238:124432

    Article  CAS  Google Scholar 

  • Ding W, Dong X, Ime IM, Gao B, Ma LQ (2014) Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105:68–74

    Article  CAS  Google Scholar 

  • Emerson K, Russo RC, Lund RE, Thurston RV (1975) Aqueous ammonia equilibrium calculations: effect of pH and temperature. J Fish Board Can 32(12):2379–2383

    Article  CAS  Google Scholar 

  • Fan R, Chen CL, Lin JY, Tzeng JH, Huang CP, Dong C, Huang CP (2019) Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions. Bioresour Technol 272:465–472

    Article  CAS  Google Scholar 

  • Fang G, Gao J, Liu C, Dionysiou DD, Wang Y, Zhou D (2014) Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation. Environ Sci Technol 48(3):1902–1910

    Article  CAS  Google Scholar 

  • Fang G, Liu C, Gao J, Dionysiou DD, Zhou D (2015) Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ Sci Technol 49(9):5645–5653

    Article  CAS  Google Scholar 

  • Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T, Liu H (2014) Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS One 9(12):e113888

    Article  Google Scholar 

  • Gao F, Xue Y, Deng P, Cheng X, Yang K (2015) Removal of aqueous ammonium by biochars derived from agricultural residuals at different pyrolysis temperatures. Chem Spec Bioavailab 27(2):92–97

    Article  CAS  Google Scholar 

  • Gao LY, Deng JH, Huang GF, Li K, Cai KZ, Liu Y, Huang F (2019) Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge. Bioresour Technol 272:114–122

    Article  CAS  Google Scholar 

  • Gong YP, Ni ZY, **ong ZZ, Cheng LH, Xu XH (2017) Phosphate and ammonium adsorption of the modified biochar based on Phragmites australis after phytoremediation. Environ Sci Pollut Res 24(9):8326–8335

    Article  CAS  Google Scholar 

  • Hale SE, Alling V, Martinsen V, Mulder J, Breedveld GD, Cornelissen G (2013) The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91(11):1612–1619

    Article  CAS  Google Scholar 

  • Han Y, Boateng AA, Qi PX, Lima IM, Chang J (2013) Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. J Environ Manag 118:196–204

    Article  CAS  Google Scholar 

  • Hou J, Huang L, Yang Z, Zhao Y, Deng C, Chen Y, Li X (2016) Adsorption of ammonium on biochar prepared from giant reed. Environ Sci Pollut Res 23(19):19107–19115

    Article  CAS  Google Scholar 

  • Hu R, **ao J, Wang T, Chen G, Chen L, Tian X (2020) Engineering of phosphate-functionalized biochars with highly developed surface area and porosity for efficient and selective extraction of uranium. Chem Eng J 379:122388

    Article  CAS  Google Scholar 

  • Huang L, Zhao Y, Li H, Chen Z (2015) Kinetics of heterogeneous reaction of sulfur dioxide on authentic mineral dust: effects of relative humidity and hydrogen peroxide. Environ Sci Technol 49(18):10797–10805

    Article  CAS  Google Scholar 

  • Huang WH, Lee DJ, Huang C (2020) Modification on biochars for applications: a research update. Bioresour Technol 319:124100

    Article  Google Scholar 

  • Jeon P, Lee ME, Baek K (2017) Adsorption and photocatalytic activity of biochar with graphitic carbon nitride (g-C3N4). J Taiwan Inst Chem Eng 77:244–249

    Article  CAS  Google Scholar 

  • Jia M, Wang F, Bian Y, ** X, Song Y, Kengara FO, Jiang X (2013) Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresour Technol 136:87–93

    Article  CAS  Google Scholar 

  • Jung KW, Hwang MJ, Ahn KH, Ok YS (2015) Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media. Int J Environ Sci Technol 12(10):3363–3372

    Article  CAS  Google Scholar 

  • Kalderis D, Kotti MS, Méndez A, Gascó G (2014) Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth 5(1):477–483

    Article  Google Scholar 

  • Kemmou L, Frontistis Z, Vakros J, Manariotis ID, Mantzavinos D (2018) Degradation of antibiotic sulfamethoxazole by biochar-activated persulfate: factors affecting the activation and degradation processes. Catal Today 313:128–133

    Article  CAS  Google Scholar 

  • Kim WK, Shim T, Kim YS, Hyun S, Ryu C, Park YK, Jung J (2013) Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour Technol 138:266–270

    Article  CAS  Google Scholar 

  • Kizito S, Wu S, Kirui WK, Lei M, Lu Q, Bah H, Dong R (2015) Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci Total Environ 505:102–112

    Article  CAS  Google Scholar 

  • Kong H, He J, Gao Y, Wu H, Zhu X (2011) Cosorption of phenanthrene and mercury (II) from aqueous solution by soybean stalk-based biochar. J Agric Food Chem 59(22):12116–12123

    Article  CAS  Google Scholar 

  • Kumar S, Loganathan VA, Gupta RB, Barnett MO (2011) An assessment of U (VI) removal from groundwater using biochar produced from hydrothermal carbonization. J Environ Manag 92(10):2504–2512

    Article  CAS  Google Scholar 

  • Li M, Liu Q, Guo L, Zhang Y, Lou Z, Wang Y, Qian G (2013) Cu (II) removal from aqueous solution by Spartina alterniflora derived biochar. Bioresour Technol 141:83–88

    Article  CAS  Google Scholar 

  • Li R, Zhang Y, Deng H, Zhang Z, Wang JJ, Shaheen SM, Du J (2020) Removing tetracycline and Hg (II) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation. J Hazard Mater 384:121095

    Article  CAS  Google Scholar 

  • Liu Z, Zhang FS (2009) Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J Hazard Mater 167(1–3):933–939

    Article  CAS  Google Scholar 

  • Liu Z, Zhang FS, Wu J (2010) Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel 89(2):510–514

    Article  CAS  Google Scholar 

  • Liu Z, Xue Y, Gao F, Cheng X, Yang K (2016) Removal of ammonium from aqueous solutions using alkali-modified biochars. Chem Spec Bioavailab 28(1–4):26–32

    Article  CAS  Google Scholar 

  • Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46(3):854–862

    Article  CAS  Google Scholar 

  • Lu L, Shan R, Shi Y, Wang S, Yuan H (2019) A novel TiO2/biochar composite catalyst for photocatalytic degradation of methyl orange. Chemosphere 222:391–398

    Article  CAS  Google Scholar 

  • Lyu H, Yu Z, Gao B, He F, Huang J, Tang J, Shen B (2019) Ball-milled biochar for alternative carbon electrode. Environ Sci Pollut Res 26(14):14693–14702

    Article  CAS  Google Scholar 

  • Lyu H, Zhang Q, Shen B (2020) Application of biochar and its composites in catalysis. Chemosphere 240:124842

    Article  CAS  Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants. Elsevier, Amsterdam

    Google Scholar 

  • Nielsen PH, McIlroy SJ, Albertsen M, Nierychlo M (2019) Re-evaluating the microbiology of the enhanced biological phosphorus removal process. Curr Opin Biotechnol 57:111–118

    Article  CAS  Google Scholar 

  • Oh TK, Choi B, Shinogi Y, Chikushi J (2012) Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water Air Soil Pollut 223(7):3729–3738

    Article  CAS  Google Scholar 

  • Parshetti GK, Chowdhury S, Balasubramanian R (2014) Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters. Bioresour Technol 161:310–319

    Article  CAS  Google Scholar 

  • Pi L, Jiang R, Zhou W, Zhu H, **ao W, Wang D, Mao X (2015) g-C3N4 modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants. Appl Surf Sci 358:231–239

    Article  CAS  Google Scholar 

  • Qin J, Chen Q, Sun M, Sun P, Shen G (2017) Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1, 3-dichloropropene degradation. Chem Eng J 330:804–812

    Article  CAS  Google Scholar 

  • Qiu Y, Zheng Z, Zhou Z, Sheng GD (2009) Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour Technol 100(21):5348–5351

    Article  CAS  Google Scholar 

  • Ruan X, Sun Y, Du W, Tang Y, Liu Q, Zhang Z, Tsang DC (2019) Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review. Bioresour Technol 281:457–468

    Article  CAS  Google Scholar 

  • Samsuri AW, Sadegh-Zadeh F, Seh-Bardan BJ (2014) Characterization of biochars produced from oil palm and rice husks and their adsorption capacities for heavy metals. Int J Environ Sci Technol 11(4):967–976

    Article  CAS  Google Scholar 

  • Sun K, Kang M, Zhang Z, ** J, Wang Z, Pan Z et al (2013a) Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene. Environ Sci Technol 47(20):11473–11481

    Article  CAS  Google Scholar 

  • Sun L, Wan S, Luo W (2013b) Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies. Bioresour Technol 140:406–413

    Article  CAS  Google Scholar 

  • Sun J, Lian F, Liu Z, Zhu L, Song Z (2014) Biochars derived from various crop straws: characterization and Cd (II) removal potential. Ecotoxicol Environ Saf 106:226–231

    Article  CAS  Google Scholar 

  • Sun Y, Iris KM, Tsang DC, Cao X, Lin D, Wang L et al (2019) Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. Environ Int 124:521–532

    Article  CAS  Google Scholar 

  • Taghizadeh-Toosi A, Clough TJ, Sherlock RR, Condron LM (2012) Biochar adsorbed ammonia is bioavailable. Plant Soil 350(1):57–69

    Article  CAS  Google Scholar 

  • Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  CAS  Google Scholar 

  • Tsai WT, Chen HR (2013) Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar. Int J Environ Sci Technol 10(6):1349–1356

    Article  CAS  Google Scholar 

  • Wang S, Wang J (2019) Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater. Chem Eng J 356:350–358

    Article  CAS  Google Scholar 

  • Wang Z, Guo H, Shen F, Yang G, Zhang Y, Zeng Y et al (2015) Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3−), and phosphate (PO43−). Chemosphere 119:646–653

    Article  CAS  Google Scholar 

  • Wang Z, Bakshi S, Li C, Parikh SJ, Hsieh HS, Pignatello JJ (2020) Modification of pyrogenic carbons for phosphate sorption through binding of a cationic polymer. J Colloid Interface Sci 579:258–268

    Article  CAS  Google Scholar 

  • Xu X, Cao X, Zhao L (2013) Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere 92(8):955–961

    Article  CAS  Google Scholar 

  • Xu N, Cheng X, Zhou K, Xu X, Li Z, Chen J, Li D (2018) Facilitated transport of titanium dioxide nanoparticles via hydrochars in the presence of ammonium in saturated sands: effects of pH, ionic strength, and ionic composition. Sci Total Environ 612:1348–1357

    Article  CAS  Google Scholar 

  • Xu X, Huang H, Zhang Y, Xu Z, Cao X (2019) Biochar as both electron donor and electron shuttle for the reduction transformation of Cr (VI) during its sorption. Environ Pollut 244:423–430

    Article  CAS  Google Scholar 

  • Yang J, Pan B, Li H, Liao S, Zhang D, Wu M, **ng B (2016) Degradation of p-nitrophenol on biochars: role of persistent free radicals. Environ Sci Technol 50(2):694–700

    Article  CAS  Google Scholar 

  • Yang HI, Lou K, Rajapaksha AU, Ok YS, Anyia AO, Chang SX (2018) Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars. Environ Sci Pollut Res 25(26):25638–25647

    Article  CAS  Google Scholar 

  • Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J et al (2019a) Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J 366:608–621

    Article  CAS  Google Scholar 

  • Yang F, Zhang S, Sun Y, Tsang DC, Cheng K, Ok YS (2019b) Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery. J Hazard Mater 365:665–673

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Chen J, Yang L (2013) Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environ Sci Technol 47(15):8700–8708

    Article  CAS  Google Scholar 

  • Ye Y, Ngo HH, Guo W, Liu Y, Li J, Liu Y et al (2017) Insight into chemical phosphate recovery from municipal wastewater. Sci Total Environ 576:159–171

    Article  CAS  Google Scholar 

  • Yi Y, Huang Z, Lu B, **an J, Tsang EP, Cheng W et al (2020) Magnetic biochar for environmental remediation: a review. Bioresour Technol 298:122468

    Article  CAS  Google Scholar 

  • Yu J, Zhu Z, Zhang H, Shen X, Qiu Y, Yin D, Wang S (2020) Persistent free radicals on N-doped hydrochar for degradation of endocrine disrupting compounds. Chem Eng J 398:125538

    Article  CAS  Google Scholar 

  • Zeng Q, Qin L, Bao L, Li Y, Li X (2016) Critical nutrient thresholds needed to control eutrophication and synergistic interactions between phosphorus and different nitrogen sources. Environ Sci Pollut Res 23(20):21008–21019

    Article  CAS  Google Scholar 

  • Zhang T, Li Q, Ding L, Ren H, Xu K, Wu Y, Sheng D (2011) Modeling assessment for ammonium nitrogen recovery from wastewater by chemical precipitation. J Environ Sci 23(6):881–890

    Article  Google Scholar 

  • Zhang M, Gao B, Yao Y, Xue Y, Inyang M (2012) Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem Eng J 210:26–32

    Article  CAS  Google Scholar 

  • Zhang ZB, Cao XH, Liang P, Liu YH (2013a) Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. J Radioanal Nucl Chem 295(2):1201–1208

    Article  CAS  Google Scholar 

  • Zhang P, Sun H, Yu L, Sun T (2013b) Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: impact of structural properties of biochars. J Hazard Mater 244:217–224

    Article  Google Scholar 

  • Zhang Y, Yue X, Xu W, Zhang H, Li F (2019) Amino modification of rice straw-derived biochar for enhancing its cadmium (II) ions adsorption from water. J Hazard Mater 379:120783

    Article  CAS  Google Scholar 

  • Zhang J, Jiang P, Gao F, Ren Z, Li R, Chen H et al (2020) Fuel gas production and char upgrading by catalytic CO2 gasification of pine sawdust char. Fuel 280:118686

    Article  CAS  Google Scholar 

  • Zhu X, Liu Y, Zhou C, Luo G, Zhang S, Chen J (2014) A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon 77:627–636

    Article  CAS  Google Scholar 

  • Zhu S, Huang X, Ma F, Wang L, Duan X, Wang S (2018) Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms. Environ Sci Technol 52(15):8649–8658

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dasauni, K., Divya, Nailwal, T.K. (2021). Removal of Contaminants by Modified Biochar-Based Material. In: Thapar Kapoor, R., Treichel, H., Shah, M.P. (eds) Biochar and its Application in Bioremediation. Springer, Singapore. https://doi.org/10.1007/978-981-16-4059-9_14

Download citation

Publish with us

Policies and ethics

Navigation