Genetics and Genomics Resources of Millets: Availability, Advancements, and Applications

  • Chapter
  • First Online:
Neglected and Underutilized Crops - Towards Nutritional Security and Sustainability

Abstract

In the contemporary times, agricultural and food entities have gathered a lot of scientific attention confessing their research focus mainly on major food crops and at the same time undermining the local but highly vital crops. One such food crop of notable worth that demands further research exploration is millet crop. Millets are the nutritious food crops traditionally grown and used in Asia and Africa. Millets fit into the grass family Poaceae that include species such as finger millet (Eleusine coracana), kodo millet (Paspalum scrobiculatum), foxtail millet (Setaria italica), proso millet (Panicum miliaceum), little millet (Panicum sumatrense), job’s tears (Coix lacrymajobi), and barnyard millet (Echinochloa spp.). Besides being immensely nutritional rich crop, millets pose tremendous proficiency to withstand hard stress conditions allowing them to endure the severity of climate change. These resilient features underline the prominence of directing research and development towards these crops. Except for finger millet and foxtail millet, other small millets have received little research consideration in terms of the development of genetic and genomic resources and breeding for yield improvement. In addition to germplasm diversity, the recent developments in phenoty** and genomics technologies can be used for the improvement of millets. This assessment offers an inclusive vision into the significance of millets, the global standing of their germplasm, diversity, assuring germplasm resources, and breeding approaches in order to accelerate the inclusion of climate-resilient and nutrient-rich millets for sustainable agriculture, ecology, and healthy food systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alaunyte I, Stojceska V, Derbyshire E, Plunkett A, Ainsworth P (2010) Iron-rich Teff-grain bread: an opportunity to improve individual’s iron status. Proc Nutr Soc 69:E105

    Article  Google Scholar 

  • Aliscioni S, Giussani LM, Zuloaga FO, Kellogg EA (2003) A molecular phylogeny of Panicum (Poaceae: Paniceae): tests of monophyly and phylogenetic placement within the Panicoideae. Am J Bot 90(5):796–821

    Article  CAS  PubMed  Google Scholar 

  • Arora RK (1977) ‘Job’s tears’ (Coix lacryma-jobi), a minor food and fodder crop of North-Eastern India. Econ Bot 31:358–366

    Article  Google Scholar 

  • Arya LM, Verma VK, Gupta, Karihaloo JL (2009) Development of EST-SSRs in finger millet and their transferability to pearl millet (Pennisetum glaucum). J Plant Biochemist Biotechnol 18:97–100

    Article  CAS  Google Scholar 

  • Asnaghi C, Paulet F, Kaye C, Grivet L, Deu M, Glaszmann JC, D'Hont A (2000) Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene. Theor Appl Genet 101:962–969

    Article  CAS  Google Scholar 

  • Barbeau WE, Hilu KW (1993) Protein, calcium, iron and amino acid content of selected wild and domesticated cultivars of finger millet. Plant Foods Hum Nutr 43:97–104

    Article  CAS  PubMed  Google Scholar 

  • Basavaraj G, Rao PP, Bhagavatula S, Ahmed W (2010) Availability and utilization of pearl millet in India. SAT eJournal 8:1–6

    Google Scholar 

  • Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses 807 new estimates. Ann Bot (Lond) 86:859–909

    Article  CAS  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Jenkins J (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30(6):555–561

    Article  CAS  PubMed  Google Scholar 

  • Bergamini N, Padulosi S, Ravi SB, Yenagi N (2013) Minor millets in India: a neglected crop goes mainstream. In: Fanzo J, Hunter D, Borelli T, Matei F (eds) Diversifying food and diets: using agricultural biodiversity to improve nutrition and health, pp 313–325

    Google Scholar 

  • Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet-a new marker system for comparative genetics. Theor Appl Genet 110:1467–1472

    Article  CAS  PubMed  Google Scholar 

  • Breese WA, Hash CT, Devos KM, Howarth CJ (2002) Pearl millet genomics—an overview with respect to breeding for resistance to downy mildew. In: Leslie JF (ed) Sorghum and millets pathology. Iowa State Press, Ames, pp 243–246

    Google Scholar 

  • Brunken J, De Wet JMJ, Harlan JR (1977) The morphology and domestication of pearl millet. Econ Bot:163–174

    Google Scholar 

  • Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Eck JV (2010) Setaria viridis: a model for C4 photosynthesis. Plant Cell 22(8):2537–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannarozzi G, Plaza-Wüthrich S, Esfeld K, Larti S, Wilson YS, Girma D, Lyons E (2014) Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genomics 15(1):1–21

    Article  Google Scholar 

  • Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Cell 13:415–420

    CAS  Google Scholar 

  • Clayton WD, Renvoze SA (1986) Genera graminum, grasses of the world. Kew Bull Add Ser XIII:389

    Google Scholar 

  • Colosi JC, Schaal BA (1997) Wild proso millet (Panicum miliaceum) is genetically variable and distinct from crop varieties of proso millet. Weed Sci 45:509–518

    Article  CAS  Google Scholar 

  • Dansi A, Adoukonou-Sagbadja H, Vodouhe R (2010) Diversity, conservation and related wild species of Fonio millet (Digitaria spp.) in the northwest of Benin. Genet Resour Crop Evol 57(6):827–839

    Article  Google Scholar 

  • de Lumen BO, Thompson S, Odegard WJ (1993) Sulfur amino acid-rich proteins in acha (Digitaria exilis), a promising underutilized African cereal. J Agric Food Chem 41(7):1045–1047

    Article  Google Scholar 

  • Devos KM, Pittaway TS, Reynolds A, Gale MD (2000) Comparative map** reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor Appl Genet 100(2):190–198

    Article  CAS  Google Scholar 

  • Dida MM, Wanyera N, Dunn MLH, Bennetzen JL, Devos KM (2008) Population structure and diversity in finger millet (Eleusine coracana) germplasm. Trap Plant Biol 1(2):131–141

    Article  Google Scholar 

  • Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA (2004) Genetic control of branching in foxtail millet. Proc Natl Acad Sci U S A 101(24):9045–9050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druka A, Kudrna D, Han F, Kilian A, Steffenson B, Frisch D, Tomkins J, Wing R, Kleinhofs A (2000) Physical map** of the barley stem rust resistance gene rpg4. Mol Genet Genomics 264:283–290

    Article  CAS  Google Scholar 

  • Dwivedi S, Upadhyaya H, Subudhi P, Gehring C, Bajic V, Ortiz R (2010) Enhancing abiotic stress tolerance in cereals through breeding and transgenic interventions. Plant Breed Rev 33:31–114

    Google Scholar 

  • Fernandez DR, Vanderjagt DJ, Millson M, Huang Y-S, Chuang L-T, Pastuszyn A, Glew RH (2003) Fatty acid, amino acid and trace mineral composition of Eleusine coracana (Pwana) seeds from northern Nigeria. Plant Foods Hum Nutr 58(3):1–10

    Article  CAS  Google Scholar 

  • Frizzi A, Huang S, Gilbertson LA, Armstrong TA, Luethy MH, Malvar TM (2008) Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. Plant Biotechnol J 6(1):13–21

    CAS  PubMed  Google Scholar 

  • Gale MD, Devos KM (1998) Plant comparative genetics after 10 years. Science 282:656–659

    Article  CAS  PubMed  Google Scholar 

  • Giussani LM, Cota-Sanchez JH, Zuloaga FO, Kellogg EA (2001) A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of Cs photosynthesis. Am J Bot 88:1993–2012

    Article  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100

    Article  CAS  PubMed  Google Scholar 

  • Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 6:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Gowda CLL, Rai KN, Reddy BVS, Saxena KB (2006) Hybrid parents research at ICRISAT. International Crops Research Institute for the Semi-Arid Tropics

    Google Scholar 

  • Gulia SK, Hash CT, Thakur RP, Breese WA, Sangwan RS (2007) Map** new QTLs for downy mildew (Sclerospora graminicola (Sacc.) J. Schroet. J resistance in pearl millet (Pennisetum glaucum (L.) R. Br.). pp 373–386

    Google Scholar 

  • Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26(2):145–161

    Article  Google Scholar 

  • Gupta S, Kumari K, Muthamilarasan M, Parida SK, Prasad M (2014) Population structure and association map** of yield contributing agronomic traits in foxtail millet. Plant Cell Rep 33(6):881–893

    Article  CAS  PubMed  Google Scholar 

  • Harlan JR (1975) Our vanishing genetic resources. Science 188(4188):618–621

    Article  Google Scholar 

  • Hash CT, Witcombe JR (2001) Pearl millet molecular marker research. Int Sorghum Millets Newsl 42:8–15

    Google Scholar 

  • Ibrahima OF, Chibani SA, Oran M, Boussaid Y, Karamanos, Raies A (2005) Allozyme variation among some pearl millet (Pennisetum glaucum L.) cultivars collected from Tunisia and West Africa. Genet Resour Crop Evol 52:1087–1097

    Article  CAS  Google Scholar 

  • ICRISAT (2009) ICRISAT archival report (2008) MTP project 5: producing more and better food at lower cost of staple cereal and legume hybrids in the Asian SAT (sorghum, pearl millet, and pigeon pea) through genetic improvement. pp 158–159

    Google Scholar 

  • Ingram AL, Doyle JJ (2003) The origin and evolution of Eragrostis tef (Poaceae) and related polyploids: evidence from nuclear waxy and plastid rps16. Am J Bot 90(1):116–122

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Zhu C (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45(8):957–961

    Article  CAS  PubMed  Google Scholar 

  • Joint FAO/WHO Expert Committee on Food Additives (1972) Evaluation of mercury, lead, cadmium and the food additives amaranth, diethyl pyro carbonate, and octyl gallate (No. 51). World Health Organization, Geneva

    Google Scholar 

  • Jones ES, Breese WA, Liu CJ, Singh SD, Shaw DS, Witcombe JR (2002) Map** quantitative trait loci for resistance to downy mildew in pearl millet: field and glasshouse detect the same QTL. Crop Sci 42:1316–1323

    Article  CAS  Google Scholar 

  • Kellogg EA (2003) What happens to genes in duplicated genomes. Proc Natl Acad Sci U S A 100:4369–4371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khairwal IS, Rai KN, Yadav OP, Bhatnagar SK (2004) Pearl millet cultivars. All India coordinated pearl millet improvement project, Mandor, Jodhpur, India. Indian Council of Agricultural Research, p 22

    Google Scholar 

  • Kholova J, Hash CT, Kumar PL, Yadav RS, Koaova M, Vadez V (2010) Terminal drought-tolerant pearl millet (Pennisetum glaucum (L.) R. Br.) have high leaf ABA and limit transpiration at high vapour pressure deficit. J Exp Bot 61:1431–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian A, Chen J, Han F, Steffenson B, Kleinhofs A (1997) Toward map-based cloning of the barley stem rust resistance gene Rp gland rpg4 using rice as a inter genomic cloning vehicle. Plant Mol Biol 35:187–195

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Gaur VS, Goel A, Gupta AK (2015) De novo assembly and characterization of develo** spikes transcriptome of finger millet (Eleusine coracana): a minor crop having nutraceutical properties. Plant Mol Biol Report 33(4):905–922

    Article  CAS  Google Scholar 

  • Kumari PL, Sumathi S (2002) Effect of consumption of finger millet on hyperglycemia in non-insulin dependent diabetes mellitus (NIDDM) subjects. Plant Foods Hum Nutr 57(3–4):205–213

    Article  Google Scholar 

  • Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A, Parida SK, Prasad M (2013) Development of eSSR-markers in Setaria italica and their applicability in studying genetic diversity, cross-transferability and comparative map** in millet and non-millet species. PLoS One 8(6):e67742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata C, Gupta S, Prasad M (2013) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33(3):328–343

    Article  PubMed  Google Scholar 

  • Li HW, Li CH, Pao WK (1945) Cytological and genetic studies of interspecific cross of the cultivated foxtail millet, Setaria italica P. Beauv., and the green foxtail millet, S. viridis L. J Am Soc Agron 37:32–54

    Article  Google Scholar 

  • Malconber ST, Preston JC, Reinheimer R, Kossuth J, Kellogg EA (2006) Developmental gene evolution and the origin of grass inflorescence diversity. Adv Bot Res 44:425–480

    Article  CAS  Google Scholar 

  • Malleshi NG, Klopfenstein CF (1998) Nutrient composition, amino acid and vitamin contents of malted sorghum, pearl millet, finger millet and their rootlets. Int J Food Sci Nutr 49(6):415–422

    Article  CAS  Google Scholar 

  • Mengesha MH, Pickett RC, Davis RL (1965) Genetic variability and interrelationship of characters in Teff, Eragrostis tef (Zucc.) Trotter 1. Crop Sci 5(2):155–157

    Article  Google Scholar 

  • Mishra AK, Muthamilarasan M, Khan Y, Parida SK, Prasad M (2014) Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L.). PLoS One 9(1):e86852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miura R, Terauchi R (2005) Genetic control of weediness traits and the maintenance of sympatric crop–weed polymorphism in pearl millet (Pennisetum glaucum). Mol Ecol 14(4):1251–1261

    Article  CAS  PubMed  Google Scholar 

  • Morgan RN, Wilson JP, Hanna WW, Ozias-Akins P (1998) Molecular markers for rust and pyricularia leaf spot disease resistance in pearl millet. Theor Appl Genet 96:413–420

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Suresh V, Pandey B, Kumari G, Parida K, Prasad M (2014) Development of 5123 intron-length polymorphic markers for large-scale genoty** applications in foxtail millet. DNA Res 21(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • Nath M, Goel A, Taj G, Kumar A (2010) Molecular cloning and comparative in silico analysis of calmodulin genes from cereals and millets for understanding the mechanism of differential calcium accumulation. J Proteomics Bioinform 3:294–301

    CAS  Google Scholar 

  • National Research Council (NRC) (1996) National science education standards. National Academy of Sciences

    Google Scholar 

  • Pandey G, Misra G, Kumari K, Gupta S, Parida SK, Chattopadhyay D, Prasad M (2013) Genome-wide development and use of microsatellite markers for large-scale genoty** applications in foxtail millet [Setariaitalica (L.)]. DNA Res 20(2):197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips S (1995) Flora of Ethiopia and Eritrea. Poaceae (Gramineae), vol 7. National Herbarium, Addis Ababa Univ., Addis Ababa, Ethiopia, and Department of Systematic Botany, Uppsala Univ., Uppsala

    Google Scholar 

  • Poncet V, Martel E, Allouis S, Devos K, Lamy F, Sarr A, Robert T (2002) Comparative analysis of QTLs affecting domestication traits between two domesticated× wild pearl millet (Pennisetum glaucum L., Poaceae) crosses. Theor Appl Genet 104(6–7):965–975

    Article  CAS  PubMed  Google Scholar 

  • Porteres R (1976) African cereals: eleusine, fonio, black fonio, teff, Brachiaria, Paspalum, Pennisetum and African rice. In: Harlan J, de Wet JMJ, Stemler A (eds) Origins of African plant domestication. Mouton Publ, The Hague, pp 409–452

    Chapter  Google Scholar 

  • Puranik S, Sahu PP, Mandal SN, Parida SK, Prasad M (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setariaitalica L.). PLoS One 8(5):e64594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts MA, Reader SM, Dalgliesh C, Miller TE, Foote TN, Fish LJ, Snape JW, Moore G (1999) Induction and characterization of Phi wheat mutants. Genetics 153:1909–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha D, Gowda MC, Arya L, Verma M, Bansal KC (2016) Genetic and genomic resources of small millets. Crit Rev Plant Sci 35(1):56–79

    Article  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Minx P (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schontz D, Rether B (1998) Genetic variability in foxtail millet, Setariaitalica (L.) P. Beauv.-RFLP using a heterologous rDNA probe. Plant Breed 117(3):231–234

    Article  Google Scholar 

  • Sehgal DT, Napolean L, Skot V, Vadez CT, Yaday RS (2009) Conducting association map** analysis of global pearl millet germplasm collection to validate candidate genes associated with a major drought tolerance QTL. In: Plant and animal genome 17 conference, San Diego, 10–14 Jan

    Google Scholar 

  • Sharma YK, Yadav SK, Khairwal IS (2007) Evaluation of pearl millet germplasm lines against downy mildew incited by Sclerospora graminicola in western Rajasthan. J SAT Agric 3:2

    Google Scholar 

  • Shimanuki S, Nagasawa T, Nishizawa N (2006) Plasma HDL subfraction levels increase in rats fed proso-millet protein concentrate. Med Sci Monit 12:BR221–BR226

    CAS  PubMed  Google Scholar 

  • Till-Bottraud I, Reboud X, Brabant P, Lefranc M, Rherissi B, Vedel F, Darmency H (1992) Outcrossing and hybridization in wild and cultivated foxtail millets: consequences for the release of transgenic crops. Theor Appl Genet 83(8):940–946

    Article  CAS  PubMed  Google Scholar 

  • Tobias CM, Sarath G, Twigg P, Lindquist E, Nicholas J, McCann C, Carpita N, Lazo G (2008) Comparative genomics in switchgrass using 61, 585 high-quality expressed sequence tags. Plant Genome 1:111–124

    Article  CAS  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12(6):e1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakasa K, Hasegawa H, Nemoto H, Matsuda F, Miyazawa H, Tozawa Y, Miyagawa H (2006) High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J Exp Bot 57(12):3069–3078

    Article  CAS  PubMed  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Cavan GP, Howarth CJ (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theor Appl Genet 104(1):67–83

    Article  CAS  PubMed  Google Scholar 

  • Yadav CB, Muthamilarasan M, Pandey G, Khan Y, Prasad M (2014) Development of novel microRNA-based genetic markers in foxtail millet for genoty** applications in related grass species. Mol Breed 34(4):2219–2224

    Article  CAS  Google Scholar 

  • Yadav CB, Bonthala VS, Muthamilarasan M, Pandey G, Khan Y, Prasad M (2015) Genome-wide development of transposable elements-based markers in foxtail millet and construction of an integrated database. DNA Res 22(1):79–90

    Article  CAS  PubMed  Google Scholar 

  • Yu JY, Kantety RV, Graznak E, Benscher D, Tefera H, Sorrells ME (2006) A genetic linkage map for tef [Eragrostis tef (Zucc.) Trotter]. Theor Appl Genet 113:1093–1102

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhang H, Li J (2007) Advances of millet research on nutrition and application. J Chin Cereals Oils Assoc 22:51–55

    Google Scholar 

  • Zhang L, Liu R, Niu W (2014) Phytochemical and antiproliferative activity of proso millet. PLoS One 9(8):e104058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabreena, Nazir, M., Ganai, B.A., Mir, R.A., Zargar, S.M. (2021). Genetics and Genomics Resources of Millets: Availability, Advancements, and Applications. In: Zargar, S.M., Masi, A., Salgotra, R.K. (eds) Neglected and Underutilized Crops - Towards Nutritional Security and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-3876-3_6

Download citation

Publish with us

Policies and ethics

Navigation