Research Progress of Electrical Resistance Tomography

  • Conference paper
  • First Online:
3D Imaging Technologies—Multi-dimensional Signal Processing and Deep Learning

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 234))

  • 565 Accesses

Abstract

With the development of the times, the non-destructive testing technology of concrete has been continuously explored by countless scientific researchers to meet the requirements of contemporary people for architecture. It is moving toward more accurate, low-cost, portable, non-radioactive, non-injectable, and the development of features such as visualization and electrical resistance tomography (ERT) technology has these features. This article mainly introduces the development process of this technology from the application research of electrical resistance tomography, sensor unit, image reconstruction unit, three aspects introduce the development of ERT, and briefly summarize the research progress of conductive concrete. The problems that need to be solved in the development of ERT technology and the development of ERT in the field of concrete non-destructive testing are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. **ao, L.Q.: Research on Finite Element Model Optimization and Image Reconstruction Algorithm of Electrical Resistance Tomography. Tian** University (2014)

    Google Scholar 

  2. Henderson, R.P., Webster, J.G.: An impedance camera for spatially specific measurements of the thorax. IEEE Trans. Biomed. Eng. 25(3), 250–254 (1978)

    Article  Google Scholar 

  3. Barber, D.C., Brown, B.H.: Applied potential tomography. J. Phys. E. Sci. Instrum. 17(9), 723 (1984)

    Article  Google Scholar 

  4. Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125(1), 153–169 (1987)

    Article  MathSciNet  Google Scholar 

  5. McKee, S.L., Williams, R.A., Boxman, A.: Development of solid-liquid mixing models using tomographic techniques. Int. J. Multiph. Flow 22(S1), 99–99 (1996)

    Article  Google Scholar 

  6. Xu, D.L.: Research on Resistivity Tomography of Smart Concrete Structure. Wuhan University of Technology (2006)

    Google Scholar 

  7. Hou, T.C., Lynch, J.P.: Electrical impedance tomographic methods for sensing strain fields and crack damage in cementitious structures. J. Intell. Mater. Syst. Struct. 20(11), 1363–1379 (2009)

    Article  Google Scholar 

  8. Yang, C.Y., Wang, H.X., Cui, Z.Q.: Visual measurement of bubbling bed gas holdup distribution based on double-section ERT. J. Transducer Technol. 25, 1029–1033 (2012)

    Google Scholar 

  9. Zhou, X.Y., Yu, J.Q., Li, T.J.: Application of electrical impedance imaging technology in water seepage detection of cement-based materials. Nondestr. Test. 39, 26–30 (2017)

    Google Scholar 

  10. Avis, N.J., Barber, D.C., Brown, B.H., Kiber, M.A.: Back-projection distortions in applied potential tomography images due to non-uniform reference conductivity distributions. Clin. Phys. Physiol. Meas. 13(A), 113 (1992)

    Article  Google Scholar 

  11. Geselowitz, D.B.: An application of electrocardiographic lead theory to impedance plethysmography. IEEE Trans. Biomed. Eng. 18(1), 38–41 (1971)

    Article  Google Scholar 

  12. Murai, T., Kagawa, Y.: Electrical impedance computed tomography based on a finite element model. IEEE Trans. Biomed. Eng. 32(3), 177–184 (1985)

    Article  Google Scholar 

  13. Yorkey, T.J., Webster, J.G., Tompkins, W.J.: An improved perturbation technique for electrical impedance imaging with some criticisms. IEEE Trans. Biomed. Eng. 34(11), 898–901 (1987)

    Article  Google Scholar 

  14. Cheney, M., Isaacson, D., Newell, J.C., Simske, S., Goble, J.: NOSER: an algorithm for solving the inverse conductivity problem. Int. J. Imaging Syst. Technol. 2(2), 66–75 (1990)

    Article  Google Scholar 

  15. Santosa, F., Vogelius, M.: A backprojection algorithm for electrical impedance imaging. SIAM J. Appl. Math. 50(1), 216–243 (1990)

    Article  MathSciNet  Google Scholar 

  16. Vauhkonen, M., Karjalainen, P.A., Kaipio, J.P.: A Kalman filter approach to track fast impedance changes in electrical impedance tomography. IEEE Trans. Biomed. Eng. 45(4), 486–493 (1998)

    Article  Google Scholar 

  17. Yang, W.Q., Spink, D.M., York, T.A., McCann, H.J.M.S.: An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography. Meas. Sci. 10(11), 1065 (1999)

    Article  Google Scholar 

  18. Dong, F., Xu, L.J., Liu, X.P.: Flow pattern recognition of two-phase flow using electrical resistance tomography. Chin. J. Sci. Instrum. 22, 416–417 (2001)

    Google Scholar 

  19. Wei, Y., Yu, H.B., Wang, S.: Research on regularized generalized inverse ERT image reconstruction algorithm. Control Decis. 18, 500–503 (2003)

    Google Scholar 

  20. Liu, T.J.: Engineering Conductivity Measurement Technology and Application Research. Zhejiang University (2006)

    Google Scholar 

  21. Li, S.X., Wang, H.X., Fan, W.R.: Improved regularized ERT imaging algorithm based on three-dimensional model. J. Tian** Univ. 45, 215–220 (2012)

    Google Scholar 

  22. **ao, L.Q, Wang, H.X.: Static image reconstruction algorithm based on clustering electrical resistance tomography. Chin. J. Sci. Instrum. 1258–1266 (2016)

    Google Scholar 

  23. Huang, S., Green, R.G., Plaskowski, A., Beck, M.S.: A high frequency stray-immune capacitance transducer based on the charge transfer principle. IEEE Trans. Instrum. Meas. 37(3), 368–373 (1988)

    Article  Google Scholar 

  24. Wang, M., Dickin, F.J., Mann, R.: Electrical resistance tomographic sensing systems for industrial applications. Chem. Eng. Commun. 175(1), 49–70 (1999)

    Article  Google Scholar 

  25. Ma, Y.X., Xu, L.G., Jiang, C.Z.: Research on electrical resistance tomography technology. Chin. J. Sci. Instrum. 195–198+213 (2001)

    Google Scholar 

  26. Wei, Y., Yu, H.B., Wen, P.Z.: ERT sensor structure research and optimization design. Chin. J. Sci. Instrum. 24, 632–635 (2003)

    Google Scholar 

  27. Wang, H.X., Wang, J., Hu, L., Jiang, W.W., Chi, K.H., Song, Z.J.: Optimal design of ERT/ECT dual mode sensitive array electrode. J. Tian** Univ. 08, 911–918 (2008)

    Google Scholar 

  28. Wang, P.: Electrical Resistance Tomography (ERT) Technology and Its Application in Two-Phase Flow Detection. **dian University (2013)

    Google Scholar 

  29. **ao, L.Q., Wang, H.X., Nie, W.Y.: Array electrode width optimization of electrical resistance tomography system. J. Tian** Univ. 01, 79–87 (2018)

    Google Scholar 

  30. Li, C.T.: Research on the Conductivity and Pressure Sensitivity of Steel Slag Concrete. Chongqing University (2004)

    Google Scholar 

  31. Ao, Z.X.: Research on Steel Slag Graphite Conductive Asphalt Concrete. Wuhan University of Technology (2009)

    Google Scholar 

  32. Zhao, R.H., Ou, H.W., Fu, J.Y.: Study on the resistivity stability of conductive mortar mixed with industrial waste materials. Mater. Rev. 29, 129–134 (2015)

    Google Scholar 

  33. Yi, F.: Preparation and Research of Cement-Based Carbon Fiber Conductive Composite Materials. Shenzhen University (2016)

    Google Scholar 

  34. Hong, S.H., Yuan, T.F., Choi, J.S., Yoo, Y.S.: Effects of steelmaking slag and moisture on electrical properties of concrete. Materials 13(12), 2675 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Doctoral Foundation of the Shandong Natural Science Foundation (ZR2018BEE038), National Nature Science Foundation of China (51778372, 51678277), Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering (GDDCE15-05), A Project of Shandong Province Higher Educational Science and Technology 2015 (TJY1504), and the Doctoral Foundation of University of **an (XBS1437) fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Ren, H., Zhao, P., Qin, L. (2021). Research Progress of Electrical Resistance Tomography. In: Jain, L.C., Kountchev, R., Shi, J. (eds) 3D Imaging Technologies—Multi-dimensional Signal Processing and Deep Learning. Smart Innovation, Systems and Technologies, vol 234. Springer, Singapore. https://doi.org/10.1007/978-981-16-3391-1_16

Download citation

Publish with us

Policies and ethics

Navigation