cFAT-GAN: Conditional Simulation of Electron–Proton Scattering Events with Variate Beam Energies by a Feature Augmented and Transformed Generative Adversarial Network

  • Chapter
  • First Online:
Deep Learning Applications, Volume 3

Abstract

The recently proposed generative adversarial network (GAN)-based event generator, the Feature Augmented and Transformed GAN (FAT-GAN), has shown an impressive capability of reproducing inclusive electron–proton scattering events at given collision energy. In contrast, many practical applications require the event generator to have the flexibility of allowing users to specify the reaction energy as an input to produce the corresponding synthetic events. In this work, we extend the FAT-GAN framework by conditioning the component neural networks according to the given reaction energy. We demonstrate that this model, referred to as cFAT-GAN, can reliably produce inclusive event feature distributions and correlations for a continuous range of reaction energies by automatically interpolating and extrapolating from a set of trained energies. We employ a continuous energy feature representation to enable the networks to organically learn the distribution relationships between different reaction energies, laying the groundwork for accessing events at untrained energies. This continuous conditional energy provides a degree of versatility to the cFAT-GAN for its further development as a significant research tool in high-energy and nuclear physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alanazi, Y., Sato, N., Liu, T., W. Melnitchouk, M.P.K., Pritchard, E., Robertson, M., Strauss, R., Velasco, L., Li, Y.: Simulation of electron-proton scattering events by a feature-augmented and transformed generative adversarial network (fat-gan) (2020). ar**v:2001.11103

  2. Bahr, M., et al.: Herwig++ physics and manual. Eur. Phys. J. C 58, 639–707 (2008). https://doi.org/10.1140/epjc/s10052-008-0798-9

    Article  Google Scholar 

  3. Butter, A., Plehn, T., Winterhalder, R.: How to GAN LHC events. SciPost Phys. 7 (2019). https://doi.org/10.21468/SciPostPhys.7.6.075

  4. Clark, A., Donahue, J., Simonyan, K.: Adversarial video generation on complex datasets (2019)

    Google Scholar 

  5. Donahue, D., Rumshisky, A.: Adversarial text generation without reinforcement learning (2018). CoRR ar**v:1810.06640

  6. Gauthier, J.: Conditional generative adversarial nets for convolutional face generation (2015)

    Google Scholar 

  7. Gleisberg, T., Hoeche, S., Krauss, F., Schonherr, M., Schumann, S., Siegert, F., Winter, J.: Event generation with SHERPA 1.1. JHEP 02, 007 (2009). https://doi.org/10.1088/1126-6708/2009/02/007

  8. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Proceedings of NIPS’14, pp. 2672–2680. Cambridge, MA, USA (2014). http://dl.acm.org/citation.cfm?id=2969033.2969125

  9. Gretton, A., Borgwardt, K., Rasch, M.J., Scholkopf, B., Smola, A.J.: A kernel method for the two-sample problem. In: Advances in Neural Information Processing Systems, vol. 19 (2007)

    Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs (2017). CoRR ar**v:1704.00028

  11. Hashemi, B., Amin, N., Datta, K., Olivito, D., Pierini, M.: LHC analysis-specific datasets with generative adversarial networks (2019)

    Google Scholar 

  12. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks (2016). CoRR ar**v:1611.07004

  13. Lu, Y., Tai, Y.W., Tang, C.K.: Attribute-guided face generation using conditional cyclegan (2018)

    Google Scholar 

  14. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008). http://www.jmlr.org/papers/v9/vandermaaten08a.html

  15. Michelsanti, D., Tan, Z.H.: Conditional generative adversarial networks for speech enhancement and noise-robust speaker verification. In: Interspeech 2017 (2017). https://doi.org/10.21437/interspeech.2017-1620

  16. Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014). CoRR ar**v:1411.1784

  17. Musella, P., Pandolfi, F.: Fast and accurate simulation of particle detectors using generative adversarial networks. Comput. Softw. Big Sci. 2(1) (2018). https://doi.org/10.1007/s41781-018-0015-y

  18. de Oliveira, L., Paganini, M., Nachman, B.: Learning particle physics by example: location-aware generative adversarial networks for physics synthesis. Comput. Softw. Big Sci. 1(1) (2017). https://doi.org/10.1007/s41781-017-0004-6

  19. Paganini, M., de Oliveira, L., Nachman, B.: Accelerating science with generative adversarial networks: an application to 3d particle showers in multilayer calorimeters. Phys. Rev. Lett. 120(4) (2018). https://doi.org/10.1103/physrevlett.120.042003

  20. Paganini, M., de Oliveira, L., Nachman, B.: Calogan simulating 3d high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks. Phys. Rev. D 97(1) (2018). https://doi.org/10.1103/physrevd.97.014021

  21. Sjostrand, T., Mrenna, S., Skands, P.Z.: A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852–867 (2008). https://doi.org/10.1016/j.cpc.2008.01.036

  22. Winter, R., Clevert, D.: IVE-GAN: invariant encoding generative adversarial networks (2017). CoRR ar**v:1711.08646

Download references

Acknowledgements

We thank Jianwei Qiu for helpful discussions. This work was supported by the LDRD project No. LDRD19-13, No. LDRD20-18, and No. LDRD21-22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaohang Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 20803 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Velasco, L. et al. (2022). cFAT-GAN: Conditional Simulation of Electron–Proton Scattering Events with Variate Beam Energies by a Feature Augmented and Transformed Generative Adversarial Network. In: Wani, M.A., Raj, B., Luo, F., Dou, D. (eds) Deep Learning Applications, Volume 3. Advances in Intelligent Systems and Computing, vol 1395. Springer, Singapore. https://doi.org/10.1007/978-981-16-3357-7_10

Download citation

Publish with us

Policies and ethics

Navigation