Predicting Capacity of Defected Pipe Under Bending Moment with Data-Driven Model

  • Conference paper
  • First Online:
Modern Mechanics and Applications

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Water mains which suffered from corrosive environment and various loads/effects. This leads to the simultaneous occurrence of the decrease of the pipe capacity and the appearance of significant bending moments within the pipe. Various investigation in literature focused on the stress of defected pipe due to burst pressure for oil and gas pipe under the high internal pressure, rather than the bended water mains. Primitive studies on this problem are at the observation step without providing an applicable model for practice. Since finding analytical solution for corrosion pipe is a challenging task because of the localized of the defects, the Finite Element Analysis (FEA) is an effective alternative. The critical drawback of FEA is that the problem needs to analysis separately with computational expense and required highly skilled experts. To ease these difficulties, a data-driven model is developed based on the database generated from FEAs and labeled by their results. The application of machine learning techniques improves the accuracy of the conventionally statistical regression models such as linear regression due to the flexible of the model and thus a trained data-driven model is a practical approach to solve the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 223.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 279.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Y., Hauch, S.: Collapse capacity of corroded pipes under combined pressure, longitudinal force and bending. Int. J. Offshore Polar Eng. 11(01) (2001)

    Google Scholar 

  2. Balkaya, M., Moore, I.D., Sağlamer, A.: Study of nonuniform bedding support because of erosion under cast iron water distribution pipes. J. Geotech. Geoenviron. Eng. 138(10), 1247–1256 (2012)

    Article  Google Scholar 

  3. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)

    Google Scholar 

  4. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression trees. Wadsworth & Brooks. Cole Statistics/Probability Series. (1984)

    Google Scholar 

  5. Carreira-Perpinan, M.A., Hinton, G.E.: On contrastive divergence learning. In: Aistats. Citeseer, pp. 33–40 (2005)

    Google Scholar 

  6. Chandra Mondal, B., Sutra Dhar, A.: Finite-element evaluation of burst pressure models for corroded pipelines. J. Press. Vessel Technol. 139(2) (2017)

    Google Scholar 

  7. Chen, Y.-F., Li, X., Zhou, J.: Ultimate bending capacity of pipe with arbitrary corrosion defects. Eng. Mech. 22(2), 43–49 (2009)

    Google Scholar 

  8. Chen, Y., Li, X., Chai, Y., Zhou, J.: Assessment of the flexural capacity of corroded steel pipes. Int. J. Press. Vessels Pip. 87(2–3), 100–110 (2010)

    Article  Google Scholar 

  9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  10. Diniz, J., Vieira, R., Castro, J., Benjamin, A., Freire, J.: Stress and strain analysis of pipelines with localized metal loss. Exp. Mech. 46(6), 765–775 (2006)

    Article  Google Scholar 

  11. Duong, H.T., Phan, H.C., Bui, N.D., Le, T.-T.: Optimization design of rectangular concrete-filled steel tube short columns with balancing composite motion optimization and data-driven model. Structures (2020) Accepted

    Google Scholar 

  12. Folkman, S.: Water main break rates in the USA and Canada: a comprehensive study (2018)

    Google Scholar 

  13. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)

    Google Scholar 

  14. Géron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media (2019)

    Google Scholar 

  15. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  16. Jang, J.-S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  17. Koy, C., Yune, C.-Y.: Numerical analysis on consolidation of soft clay by sand drain with heat injection. J. Korean Geotech. Soc. 33(11), 45–57 (2017)

    Google Scholar 

  18. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 3361(10), 1995 (1995)

    Google Scholar 

  19. Li, X., Bai, Y., Su, C., Li, M.: Effect of interaction between corrosion defects on failure pressure of thin wall steel pipeline. Int. J. Press. Vessels Pip. 138, 8–18 (2016)

    Article  Google Scholar 

  20. Liu, J., Chauhan, V., Ng, P., Wheat, S., Hughes, C.: Remaining strength of corroded pipe under secondary (biaxial) loading, GL Industrial Services UK Ltd. (2009)

    Google Scholar 

  21. Liyanage, K.T., Dhar, A.S.: Effects of corrosion pits on wall stresses in cast-iron water mains. J. Pipeline Syst. Eng. Pract. 8(4), 04017023 (2017)

    Article  Google Scholar 

  22. Ma, B., Shuai, J., Liu, D., Xu, K.: Assessment on failure pressure of high strength pipeline with corrosion defects. Eng. Fail. Anal. 32, 209–219 (2013)

    Article  Google Scholar 

  23. Makar, J., Rogge, R., McDonald, S., Tesfamariam, S.: The effect of corrosion pitting on circumferential failures in grey iron pipes. American Water Works Association, Denver (2005)

    Google Scholar 

  24. Maraveas, C., Wang, Y., Swailes, T., Sotiriadis, G.: An experimental investigation of mechanical properties of structural cast iron at elevated temperatures and after cooling down. Fire Saf. J. 71, 340–352 (2015)

    Article  Google Scholar 

  25. Matin, S., Farahzadi, L., Makaremi, S., Chelgani, S.C., Sattari, G.: Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest. Appl. Soft Comput. 70, 980–987 (2018)

    Article  Google Scholar 

  26. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  27. Mondal, B.C., Dhar, A.S.: Burst pressure of corroded pipelines considering combined axial forces and bending moments. Eng. Struct. 186, 43–51 (2019)

    Article  Google Scholar 

  28. Montáns, F.J., Chinesta, F., Gómez-Bombarelli, R., Kutz, J.N.: Data-driven modeling and learning in science and engineering. C. R. Méc. 347(11), 845–855 (2019)

    Article  Google Scholar 

  29. Ni, P., Mangalathu, S., Yi, Y.: Fragility analysis of continuous pipelines subjected to transverse permanent ground deformation. Soils Found. 58(6), 1400–1413 (2018)

    Article  Google Scholar 

  30. Oh, C.-K., Kim, Y.-J., Baek, J.-H., Kim, Y.-P., Kim, W.-S.: Ductile failure analysis of API X65 pipes with notch-type defects using a local fracture criterion. Int. J. Press. Vessels Pip. 84(8), 512–525 (2007)

    Article  Google Scholar 

  31. Pham, T.D., Bui, N.D., Nguyen, T.T., Phan, H.C.: Predicting the reduction of embankment pressure on the surface of the soft ground reinforced by sand drain with random forest regression. In: IOP Conference Series: Materials Science and Engineering, pp. 072027. IOP Publishing (2020)

    Google Scholar 

  32. Ranzato, M.A., Huang, F.J., Boureau, Y.-L., LeCun, Y.: Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  33. Roy, S., Grigory, S., Smith, M., Kanninen, M., Anderson, M.: Numerical simulations of full-scale corroded pipe tests with combined loading (1997)

    Google Scholar 

  34. Sun, J., Shi, H., Jukes, P.: Upheaval buckling analysis of partially buried pipeline subjected to high pressure and high temperature. In: International Conference on Offshore Mechanics and Arctic Engineering, pp. 487–494 (2011)

    Google Scholar 

  35. Torii, A.J., Lopez, R.H.: Reliability analysis of water distribution networks using the adaptive response surface approach. J. Hydraul. Eng. 138(3), 227–236 (2012)

    Article  Google Scholar 

  36. Trickey, S.A., Moore, I.D., Balkaya, M.: Parametric study of frost-induced bending moments in buried cast iron water pipes. Tunn. Undergr. Space Technol. 51, 291–300 (2016)

    Article  Google Scholar 

  37. Vapnik, V.: Statistical Learning Theory. John Wiley&Sons. Inc., New York (1998)

    MATH  Google Scholar 

  38. Vazouras, P., Karamanos, S.A., Dakoulas, P.: Mechanical behavior of buried steel pipes crossing active strike-slip faults. Soil Dyn. Earthq. Eng. 41, 164–180 (2012)

    Article  Google Scholar 

  39. Yu, W., Vargas, P.M., Karr, D.G.: Bending capacity analyses of corroded pipeline. J. Offshore Mech. Arct. Eng. 134(2) (2012)

    Google Scholar 

  40. Zheng, M., Luo, J., Zhao, X., Zhou, G., Li, H.: Modified expression for estimating the limit bending moment of local corroded pipeline. Int. J. Press. Vessels Pip. 81(9), 725–729 (2004)

    Article  Google Scholar 

  41. Zhou, J., Shi, X., Du, K., Qiu, X., Li, X., Mitri, H.S.: Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel. Int. J. Geomech. 17(6), 04016129 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number: 107.02-2020.04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hieu C. Phan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phan, H.C., Bui, N.D., Pham, T.D., Duong, H.T. (2022). Predicting Capacity of Defected Pipe Under Bending Moment with Data-Driven Model. In: Tien Khiem, N., Van Lien, T., Xuan Hung, N. (eds) Modern Mechanics and Applications. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-3239-6_64

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3239-6_64

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3238-9

  • Online ISBN: 978-981-16-3239-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation