Wolbachia: Biological Control Strategy Against Arboviral Diseases

  • Chapter
  • First Online:
Genetically Modified and other Innovative Vector Control Technologies

Abstract

Arboviral diseases like dengue, chikungunya, and Zika are among the major causes of mortality and morbidity in human population. The limited control methods together with lack of antiviral therapies and effective vaccines have paved way for new approaches. One such approach to reduce the ever alarming conflagration of vector-borne diseases is based on biological strategy that reduces or blocks pathogen transmission in the vector. In this context, Wolbachia, an endosymbiont in mosquitoes, is explored as a novel and ecofriendly control strategy. Wolbachia seems to confer resistance to diverse RNA viruses protecting lives from virus-induced mortality. This review envisages the deployment of Wolbachia technology in controlling several arboviral diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achee NL, Gould G, Perkins TA, Reiner RC Jr, Morrison AC, Ritchie SA, Gubler DJ, Teyssou R, Scot TW (2015) A critical assessment of vector control for dengue prevention. PLoS Negl Trop Dis 9(5):e0003655

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed MZ, Araujo-Jnr EV, Welch JJ, Kawahara AY (2015) Wolbachia in butterflies and moths: geographic structure in infection frequency. Front Zool 12:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Khodor S, Price CT, Kalia A, Abu Kwaik Y (2010) Functional diversity of ankyrin repeats in microbial proteins. Trends Microbiol 18:132–139

    Article  CAS  PubMed  Google Scholar 

  • Alout H, Labbé P, Chandre F, Cohuet A (2017) Malaria vector control still matters despite insecticide resistance. Trends Parasitol 33(8):610–618

    Article  PubMed  Google Scholar 

  • Armbruster P, Damsky WE Jr, Giordano R, Birungi J, Munstermann LE, Conn JE (2003) Infection of new- and old-world Aedes albopictus (Diptera: Culicidae) by the intracellular parasite Wolbachia: implications for host mitochondrial DNA evolution. J Med Entomol 40:356–360

    Article  PubMed  Google Scholar 

  • Azzouna A, Greve P, Martin G (2004) Sexual differentiation traits in functional males with female genital apertures (male symbol fga) in the woodlice Armadillidium vulgare Latr. (Isopoda, Crustacea). Gen Comp Endocrinol 138:42–49

    Article  CAS  PubMed  Google Scholar 

  • Baldini F, Segata N, Pompon J, Marcenac P, Shaw WR, Dabiré RK, Diabaté A, Levashina EA, Catteruccia F (2014) Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nat Commun 5:3985

    Article  CAS  PubMed  Google Scholar 

  • Baldo L, Werren JH (2007) Revisiting Wolbachia supergroup ty** based on wsp: spurious lineages and discordance with MLST. Curr Microbiol 55:81–87

    Article  CAS  PubMed  Google Scholar 

  • Baldo L, Dunning Hotopp JC, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MC, Tettelin H, Werren JH (2006) Multilocus sequence ty** system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72(11):7098–7110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandi C, Anderson TJC, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc R Soc Lond Biol 265:2407–2413

    Article  CAS  Google Scholar 

  • Bandi C, Dunn AM, Hurst GD, Rigaud T (2001) Inherited microorganisms, sex-specific virulence and reproductive parasitism. Trends Parasitol 17:88–94

    Article  CAS  PubMed  Google Scholar 

  • Behbahani A (2012) Wolbachia infection and mitochondrial DNA comparisons among Culex mosquitoes in South West Iran. Pak J Biol Sci 15:54–57

    Article  CAS  PubMed  Google Scholar 

  • Belov GA (2014) Modulation of lipid synthesis and trafficking pathways by picornaviruses. Curr Opin Virol 9:19–23

    Article  CAS  PubMed  Google Scholar 

  • Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis 7:76–85

    Article  PubMed  Google Scholar 

  • Benelli G, Mehlhorn H (2016) Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115:1747–1754

    Article  PubMed  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496:504–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya T, Newton ILG, Hardy RW (2017) Wolbachia elevates host methyltransferase expression to block an RNA virus early during infection. PLoS Pathog 13:e1006427

    Article  PubMed  PubMed Central  Google Scholar 

  • Bian G, Xu Y, Lu P, **e Y, ** Z (2010) The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 6:e1000833

    Article  PubMed  PubMed Central  Google Scholar 

  • Black WCT, Bennett KE, Gorrochotegui-Escalante N, Barillas-Mury CV, Fernandez-Salas I, de Lourdes Munoz M, Farfan-Ale JA, Olson KE, Beaty BJ (2002) Flavivirus susceptibility in Aedes aegypti. Arch Med Res 33:379–388

    Article  CAS  PubMed  Google Scholar 

  • Bordenstein S, Rosengaus RB (2005) Discovery of a novel Wolbachia supergroup in Isoptera. Curr Microbiol 51:393–398

    Article  CAS  PubMed  Google Scholar 

  • Bordenstein SR, Marshall ML, Fry AJ, Kim U, Wernegreen JJ (2006) The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog 2:e43

    Article  PubMed  PubMed Central  Google Scholar 

  • Bork P (1993) Hundreds of ankyrin-like repeats in functionally diverse proteins-mobile modules that cross phyla horizontally. Proteins 17:363–374

    Article  CAS  PubMed  Google Scholar 

  • Bourtzis K (2008) Wolbachia-based technologies for insect pest population control. Adv Exp Med Biol 627:104–113

    Article  CAS  PubMed  Google Scholar 

  • Bourtzis K, Dobson SL, Braig HR, O’Neill SL (1998) Rescuing Wolbachia has been over looked. Nature 391:852–853

    Article  CAS  PubMed  Google Scholar 

  • Bourtzis K, Dobson SL, ** Z, Rasgon JL, Calvitti M, Moreira LA, Bossin HC, Moretti R, Baton LA, Hughes GL, Mavingui P, Gilles JR (2014) Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Trop 132(1):S150–S163

    Article  PubMed  Google Scholar 

  • Brady OJ, Golding N, Pigott DM, Kraemer MU, Messina JP, Reiner RC Jr, Scott TW, Smith DL, Gething PW, Hay SI (2014) Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit Vectors 7:338

    Article  PubMed  PubMed Central  Google Scholar 

  • Breeuwer JAJ, Werren JH (1990) Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346:558–560

    Article  CAS  PubMed  Google Scholar 

  • Brennan LJ, Keddie BA, Braig HR, Harris HL (2008) The endosymbiont Wolbachia pipientis induces the expression of host antioxidant proteins in an Aedes albopictus cell line. PLoS One 3:e2083

    Article  PubMed  PubMed Central  Google Scholar 

  • Brennan L, Haukedal J, Earle J, Keddie B, Harris H (2012) Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes of Wolbachia-infected Drosophila simulans. Insect Mol Biol 21:510–520

    Article  CAS  PubMed  Google Scholar 

  • Brown JE, McBride CS, Johnson P, Ritchie S, Paupy C, Bossin H, Lutomiah J, Fernandez-Salas I, Ponlawat A, Cornel AJ, Black WC IV, Gorrochotegui-Escalante N, Urdaneta-Marquez L, Sylla M, Slotman M, Murray KO, Walker C, Powell JR (2011) Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proc Biol Sci 278:2446–2454

    PubMed  PubMed Central  Google Scholar 

  • Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L, Egizi A, Zhao H, Caccone A, Powell JR (2014) Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution 68:514–525

    Article  CAS  PubMed  Google Scholar 

  • Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5:e1000368

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell BC, Bragg TS, Turner CE (1992) Phylogeny of symbiotic bacteria of four weevil species (Coleoptera: Curculionidae) based on analysis of 16S ribosomal DNA. Insect Biochem Mol Biol 22:415–421

    Article  CAS  Google Scholar 

  • Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT (2015) Climate change influences on global vector distributions for dengue and chikungunya viruses. Philos Trans R Soc Lond B Biol Sci 370:1665

    Article  Google Scholar 

  • Caragata EP, Rancès E, O’Neill SL, McGraw EA (2014) Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti. Microbiol Ecol 67:205–218

    Article  CAS  Google Scholar 

  • Carro AC, Damonte EB (2013) Requirement of cholesterol in the viral envelope for dengue virus infection. Virus Res 174:78–87

    Article  CAS  PubMed  Google Scholar 

  • Carvalho RG, Lourenço-de-Oliveira R, Braga IA (2014) Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas. Mem Inst Oswaldo Cruz 109:787–796

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlat S, Le Chat L, Mercot H (2003) Characterization of non-cytoplasmic incompatibility inducing Wolbachia in two continental African populations of Drosophila simulans. Heredity 90:49–55

    Article  CAS  PubMed  Google Scholar 

  • Chrostek E, Marialva MS, Yamada R, O’Neill SL, Teixeira L (2014) High anti-viral protection without immune upregulation after interspecies Wolbachia transfer. PLoS One 9:e99025

    Article  PubMed  PubMed Central  Google Scholar 

  • Clancy DJ, Hoffmann AA (1996) Cytoplasmic incompatibility in Drosophila simulans: evolving complexity. Trends Ecol Evol 11:145–146

    Article  CAS  PubMed  Google Scholar 

  • Cook PE, McMeniman CJ, O’Neill SL (2008) Modifying insect population age structure to control vector-borne disease. Adv Exp Med Biol 627:126–140

    Article  CAS  PubMed  Google Scholar 

  • Covacin C, Barker SC (2007) Supergroup F Wolbachia bacteria parasitise lice (Insecta: Phthiraptera). Parasitol Res 100:479–485

    Article  PubMed  Google Scholar 

  • de Araújo Lobo JM, Christofferson RC, Mores CN (2014) Investigations of Koutango virus infectivity and dissemination dynamics in Aedes aegypti mosquitoes. Environ Health Insights 8:9–13

    PubMed  PubMed Central  Google Scholar 

  • Delatte AH, Gimonneau G, Triboire A, Fontenille D, Delatte H (2009) Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J Med Entomol 46:33–41

    Article  CAS  PubMed  Google Scholar 

  • Diallo D, Sall AA, Diagne CT, Faye O, Faye O, Ba Y, Hanley KA, Buenemann M, Weaver SC, Diallo M (2014) Zika virus emergence in mosquitoes in southeastern Senegal, 2011. PLoS One 9(10):e109442

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobson SL (2003) Reversing Wolbachia-based population replacement. Trends Parasitol 19:128–133

    Article  PubMed  Google Scholar 

  • Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W, Rousset F, O’Neill SL (1999) Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol 29:153–160

    Article  CAS  PubMed  Google Scholar 

  • Dumler SJ, Barbet AF, Bekker CP, Dasch GA, Palmer GH, Ray SC, Rikihisa Y, Rurangirwa FR (2001) Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia—descriptions of six new species combinations and designation of Ehrlichia equi and “HGE agent” as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51:2145–2165

    Article  CAS  PubMed  Google Scholar 

  • Dutra HLC, Rocha MN, Dias FBS, Mansur SB, Caragata EP, Moreira LA (2016) Wolbachia blocks currently circulating zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe 19:771–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faria VG, Sucena E (2013) Wolbachia in the malpighian tubules: evolutionary dead-end or adaptation? J Exp Zool B Mol Dev Evol 320:195–199

    Article  PubMed  Google Scholar 

  • Flores HF, O’Neill SL (2018) Controlling vector-borne diseases by releasing modified mosquitoes. Nat Rev Microbiol 16:508–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser JE, De Bruyne JT, Iturbe-Ormaetxe I, Stepnell J, Burns RL, Flores HA, Neil SL (2017) Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog 13(12):e1006751

    Article  PubMed  PubMed Central  Google Scholar 

  • Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, McGraw EA, O’Neill SL (2014) Limited dengue virus replication in field collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl Trop Dis 8:e2688

    Article  PubMed  PubMed Central  Google Scholar 

  • Gavotte L, Vavre F, Henri H, Ravallec M, Stouthamer R, Bouletreau M (2004) Diversity, distribution and specificity of WO phage infection in Wolbachia of four insect species. Insect Mol Biol 13:147–153

    Article  CAS  PubMed  Google Scholar 

  • Geoghegan V, Stainton K, Rainey SM, Ant TH, Dowle AA, Larson T, Hester S, Charles PD, Thomas B, Sinkins SP (2017) Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells. Nat Commun 8:526

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerth M, Bleidorn C (2016) Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer. Nat Microbiol 2:16241

    Article  PubMed  Google Scholar 

  • Glowska E, Dragun-Damian A, Dabert M, Gerth M (2015) New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae). Infect Genet Evol 30:140–146

    Article  PubMed  Google Scholar 

  • Gorham CH, Fang QQ, Durden LA (2003) Wolbachia endosymbionts in fleas (Siphonaptera). J Parasitol 89:283–289

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  CAS  PubMed  Google Scholar 

  • Hardy JL, Houk EJ, Kramer LD, Reeves WC (1983) Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 28:229–262

    Article  CAS  PubMed  Google Scholar 

  • Hertig M (1936) The rickettsia, Wolbachia pipientis (Gen. Et SP.N.) and associated inclusions of the mosquito Culex pipiens. Parasitology 28:453–486

    Article  Google Scholar 

  • Hertig M, Wolbach SB (1924) Studies on rickettsia-like microorganisms in insects. J Med Res 44:329–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol Lett 281:215–220

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Turelli M (1997) Cytoplasmic incompatibility in insects. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford, pp 42–80

    Google Scholar 

  • Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O’Neill SL (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476:454–457

    Article  CAS  PubMed  Google Scholar 

  • Hughes GL, Ren X, Ramirez JL, Sakamoto JM, Bailey JA, Jedlicka AE, Rasgon JL (2011) Wolbachia infections in Anopheles gambiae cells: transcriptomic characterization of a novel host-symbiont interaction. PLoS Pathog 7:e1001296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ijdo JW, Carlson ACAC, Kennedy EL (2007) Anaplasma phagocytophilum AnkA is tyrosine-phosphorylated at EPIYA motifs and recruits SHP1 during early infection. Cell Microbiol 9:1284–1296

    Article  CAS  PubMed  Google Scholar 

  • Ilinsky Y, Kosterin OE (2017) Molecular diversity of Wolbachia in Lepidoptera: prevalent allelic content and high recombination of MLST genes. Mol Phylogenet Evol 109:164–179

    Article  CAS  PubMed  Google Scholar 

  • Ishmael N, Dunning Hotopp JC, Ioannidis P, Biber S, Sakamoto J, Siozios S, Nene V, Werren J, Bourtzis K, Bordenstein SR, Tettelin H (2009) Extensive genomic diversity of closely related Wolbachia strains. Microbiology 155:2211–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iturbe-Ormaetxe I, Burke GR, Riegler M, O’Neill SL (2005) Distribution, expression, and motif variability of ankyrin domain genes in Wolbachia pipientis. J Bacteriol 187:5136–5145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenike J, Dyer KA, Cornish C, Minhas MS (2006) Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol 4:e325

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffries CL, Walker T (2015) The potential use of Wolbachia-based mosquito biocontrol strategies for Japanese encephalitis. PLoS Negl Trop Dis 9:e0003576

    Article  PubMed  PubMed Central  Google Scholar 

  • Johanowicz DL, Hoy MA (1995) Molecular evidence for A-Wolbachia endosymbiont in the predatory mite Metaseiulus occidentalis. J Cell Biochem 21A:198

    Google Scholar 

  • Kageyama D, Traut W (2004) Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis. Proc R Soc Lond Biol 271:251–258

    Article  Google Scholar 

  • Kent BN, Bordenstein SR (2010) Phage WO of Wolbachia: lambda of the endosymbiont world. Trends Microbiol 18:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kielian MC, Helenius A (1984) Role of cholesterol in fusion of Semliki forest virus with membranes. J Virol 52:281–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kittayapong P, Baisley KJ, Baimai V, O’Neill SL (2000) Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae). J Med Entomol 37:340–345

    Article  CAS  PubMed  Google Scholar 

  • Kittayapong P, Baimai V, O’Neill SL (2002) Field prevalence of Wolbachia in the mosquito vector Aedes albopictus. Am J Trop Med Hyg 66:108–111

    Article  Google Scholar 

  • Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, Sanders S, Earl J, O’Neill SL, Thomson N, Sinkins SP, Parkhill J (2008) Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol Biol Evol 25:1877–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kose H, Karr TL (1995) Organization of Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by an anti-Wolbachia monoclonal antibody. Mech Dev 51:275–288

    Article  CAS  PubMed  Google Scholar 

  • Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Borte W, Hendrickx G, Schaffner F, Elyazar IRF, Teng HJ, Brady OJ, Messina JP, Pigott DM, Scott TW, Smith DL, Wint GRW, Golding N, Hay SI (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4:e08347

    Article  PubMed  PubMed Central  Google Scholar 

  • Kremer N, Voronin D, Charif D, Mavingui P, Mollereau B, Vavre F (2009) Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog 5:e1000630

    Article  PubMed  PubMed Central  Google Scholar 

  • Kremer N, Charif D, Henri H, Gavory F, Wincker P, Mavingui P, Vavre F (2012) Influence of Wolbachia on host gene expression in an obligatory symbiosis. BMC Microbiol 12(Suppl 1):S7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD (2011) Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. PNAS USA 108:7460–7465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landmann F, Orsi GA, Loppin B, Sullivan W (2009) Wolbachia-mediated cytoplasmic incompatibility is associated with impaired histone deposition in the male pronucleus. PLoS Pathog 5:e1000343

    Article  PubMed  PubMed Central  Google Scholar 

  • Laven H (1967) Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216:383–384

    Article  CAS  PubMed  Google Scholar 

  • Leclercq S, Giraud I, Cordaux R (2011) Remarkable abundance and evolution of mobile group II introns in Wolbachia bacterial endosymbionts. Mol Biol Evol 28:685–697

    Article  CAS  PubMed  Google Scholar 

  • Leparc-Goffart I, Nougairede A, Cassadou S, Prat C, de Lamballerie X (2014) Chikungunya in the Americas. Lancet 383(9916):514

    Article  PubMed  Google Scholar 

  • Lin MQ, den Dulk-Ras A, Hooykaas PJJ, Rikihisa Y (2007) Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell Microbiol 9:2644–2657

    Article  CAS  PubMed  Google Scholar 

  • Lo N, Paraskevopoulos C, Bourtzis K (2007) Taxonomic status of the intracellular bacterium Wolbachia pipientis. Int J Syst Evol Microbiol 57:645–657

    Article  Google Scholar 

  • Louis C, Nigro L (1989) Ultrastructural evidence of Wolbachia Rickettsiales in Drosophila simulans and their relationships with unidirectional cross incompatibility. J Invert Pathol 54:39–44

    Article  Google Scholar 

  • Lu P, Bian G, Pan X, ** Z (2012) Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl Trop Dis 6(7):e1754

    Article  PubMed  PubMed Central  Google Scholar 

  • McGraw EA, O’Neill SL (2013) Beyond insecticides: new thinking on an ancient problem. Nat Rev Microbiol 11:181–193

    Article  CAS  PubMed  Google Scholar 

  • McGraw E, Merritt D, Droller J, O’Neill S (2002) Wolbachia density and virulence attenuation after transfer into a novel host. PNAS USA 99:2918–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF, O’Neill SL (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141–144

    Article  CAS  PubMed  Google Scholar 

  • Melero-Alcíbar R (2006) The pupae of Spanish Culicinae II: Aedes vittatus Bigot, 1861 (Diptera: Culicidae). Eur Mosq Bull 21:19–22

    Google Scholar 

  • Min KT, Benzer S (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. PNAS USA 94:10792–10796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty I, Rath A, Swain S, Pradhan N, Hazra RK (2018) Wolbachia population in vectors and non vectors: a sustainable approach towards dengue control. Curr Microbiol 76:133–143

    Article  PubMed  Google Scholar 

  • Molloy JC, Sommer U, Viant MR, Sinkins SP (2016) Wolbachia modulates lipid metabolism in Aedes albopictus mosquito cells. Appl Environ Microbiol 82:3109–3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreau J, Bertin A, Caubet Y, Rigaud T (2001) Sexual selection in an isopod with Wolbachia-induced sex reversal: males prefer real females. J Evol Biol 14:388–394

    Article  Google Scholar 

  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium. Cell 139:1268–1278

    Article  PubMed  Google Scholar 

  • Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13:1435–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mousson L, Zouache K, Arias-Goeta C, Raquin V, Mavingui P, Failloux AB (2012) The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl Trop Dis 6:e1989

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller JM, Cahill MA, Rupec RA, Baeuerle PA, Nordheim A (1997) Antioxidants as well as oxidants activate c-fos via ras-dependent activation of extracellular-signal-regulated kinase 2 and ELK-1. Fed Eur Biochem Soc (FEBS) J 244:45–52

    Article  Google Scholar 

  • Musso D, Gubler DJ (2016) Zika Virus. Clin Microbiol Rev 29:487–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor L, Plichart C, Sang AC, Brelsfoard CL, Bossin HC, Dobson SL (2012) Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Negl Trop Dis 6:e1797

    Article  PubMed  PubMed Central  Google Scholar 

  • Osei-Poku J, Han C, Mbogo CM, Jiggins FM (2012) Identification of Wolbachia strains in mosquito disease vectors. PLoS One 7:e49922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Luhrmann A, Satoh A, Laskowski-Arce MA, Roy CR (2008) Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320:1651–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to the light. Microb Infect 11:1177–1185

    Article  CAS  Google Scholar 

  • Pietri JE, DeBruh H, Sullivan W (2016) The rich somatic life of Wolbachia. Microbiol Open 5:923–936

    Article  Google Scholar 

  • Ponlawat A, Harrington LC (2005) Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J Med Entomol 42:844–849

    Article  PubMed  Google Scholar 

  • Popovici J, Moreira LA, Poinsignon A, Iturbe-Ormaetxe I, McNaughton D, O’Neill SL (2010) Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes. Mem do Inst Oswaldo Cruz 105:957–964

    Article  Google Scholar 

  • Prout T (1994) Some evolutionary possibilities for a microbe that causes incompatibility in its host. Evolution 48:909–911

    Article  PubMed  Google Scholar 

  • Rainey SM, Martinez J, McFarlane M, Juneja P, Sarkies P, Lulla A, Schnettler E, Varjak M, Merits A, Miska EA, Jiggins FM, Kohl A (2016) Wolbachia blocks viral genome replication early in infection without a transcriptional response by the endosymbiont or host small RNA pathways. PLoS Pathog 12:e1005536

    Article  PubMed  PubMed Central  Google Scholar 

  • Rancès E, Ye YH, Woolfit M, McGraw EA, O’Neill SL (2012) The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 8:e1002548

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravikumar H, Ramachandraswamy N, Sampathkumar S, Prakash BM, Huchesh HC, Uday J, Puttaraju HP (2010) A preliminary survey for Wolbachia and bacteriophage WO infections in Indian mosquitoes (Diptera: Culicidae). Trop Biomed 27:384–393

    CAS  PubMed  Google Scholar 

  • Reiter P, Fontenille D, Paupy C (2006) Aedes albopictus as an epidemic vector of chikungunya virus: another emerging problem? Lancet Infect Dis 6:463–464

    Article  PubMed  Google Scholar 

  • Ricci I, Cancrini G, Gabrielli S, D’Amelio S, Favia G (2002) Searching for Wolbachia (Rickettsiales: Rickettsiaceae) in mosquitoes (Diptera: Culicidae): large polymerase chain reaction survey and new identifications. J Med Entomol 39(4):562–567

    Article  PubMed  Google Scholar 

  • Richards SL, Anderson SL, Lord CC, Smartt CT, Tabachnick WJ (2012) Relationships between infection, dissemination, and transmission of West Nile virus RNA in Culex pipiens quinquefasciatus (Diptera: Culicidae). J Med Entomol 49:132–142

    Article  PubMed  Google Scholar 

  • Rigaud T (1999) Further Wolbachia endosymbiont diversity: a tree hiding in the forest. Trends Ecol Evol 14:212–213

    Article  CAS  PubMed  Google Scholar 

  • Rikihisa Y, Lin M (2010) Anaplasma phagocytophilum and Ehrlichia chaffeensis type I IV secretion and Ank proteins. Curr Opin Microbiol 13:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ros VID, Fleming VM, Feil EJ, Breeuwer JAJ (2009) How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Appl Environ Microbiol 75:1036–1043

    Article  CAS  PubMed  Google Scholar 

  • Rousset F, Bouchon D, Pintureau B, Juchault P, Solignac M (1992) Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc R Soc Lond Biol 250:91–98

    Article  CAS  Google Scholar 

  • Rowley SM, Raven RJ, McGraw EA (2004) Wolbachia pipientis in Australian spiders. Curr Microbiol 49:208–214

    Article  CAS  PubMed  Google Scholar 

  • Salzberg SL, Hotopp JCD, Delcher AL, Pop M, Smith DR, Eisen MB, Nelson WC (2005) Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol 6:R23

    Article  PubMed  PubMed Central  Google Scholar 

  • Salzberg SL, Puiu D, Sommer DD, Nene V, Lee NH (2009) Genome sequence of the Wolbachia endosymbiont of Culex quinquefasciatus JHB. J Bacteriol 191:1725–1725

    Article  CAS  PubMed  Google Scholar 

  • Saridaki A, Bourtzis K (2010) Wolbachia: more than just a bug in insects genitals. Curr Opin Microbiol 13:67–72

    Article  CAS  PubMed  Google Scholar 

  • Sasao F, Igarashi A, Fukai K (1980) Amino acid requirements for the growth of Aedes albopictus clone C6/36 cells and for the production of dengue and chikungunya viruses in the infected cells. Microbiol Immunol 24:915–924

    Article  CAS  PubMed  Google Scholar 

  • Schultz MJ, Isern S, Michael SF, Corley RB, Connor J, Frydman HM (2017) Variable inhibition of zika virus replication by different Wolbachia strains in mosquito cell cultures. J Virol 91:e00339–e00317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scola BL, Bandi C, Raoult D (2015) Wolbachia. In: Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons Ltd., Chichester, pp 1–12

    Google Scholar 

  • Scott TW, Takken W (2012) Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol 28:114–121

    Article  PubMed  Google Scholar 

  • Service MW (1974) Survey of the relative prevalence of potential yellow fever vectors in Northwest Nigeria. Bull World Health Org 50:487–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw WR, Marcenac P, Childs LM, Buckee CO, Baldini F, Sawadogo SP, Dabiré RK, Diabaté A, Catteruccia F (2016) Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nat Commun 7:11772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons CP, Farrar JJ, Chau NVV, Wills B (2012) Dengue. N Engl J Med 366:1423–1432

    Article  CAS  PubMed  Google Scholar 

  • Sinkins SP (2004) Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochem Mol Biol 34:723–729

    Article  CAS  PubMed  Google Scholar 

  • Sironi M, Bandi C, Sacchi L, Di Sacco B, Damiani G, Genchi C (1995) Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Mol Biochem Parasitol 74:223–227

    Article  CAS  PubMed  Google Scholar 

  • Solomon T, Vaughn DW (2002) Pathogenesis and clinical features of Japanese encephalitis and West Nile virus infections. In: Japanese encephalitis and West Nile viruses. Springer, Berlin

    Google Scholar 

  • Stouthamer R, Luck R (1993) Influence of microbe-associated parthenogenesis on the fecundity of Trichogramma deion and T. pretiosum. Entomol Exp Appl 67:183–192

    Article  Google Scholar 

  • Stouthamer R, Breeuwer JAJ, Luck RF, Werren JH (1993) Molecular identification of microorganisms associated with parthenogenesis. Nature 361:66–68

    Article  CAS  PubMed  Google Scholar 

  • Tabachnick WJ (1991) Evolutionary genetics and arthropod-borne disease: the yellow fever mosquito. Am Entomol 37:14–26

    Article  Google Scholar 

  • Takken W, Koenraadt CJ (2013) Ecology of parasite-vector interactions. Wageningen Academic Publishers, Wageningen

    Book  Google Scholar 

  • Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, Sandström JP, Moran NA, Andersson SG (2002) 50 million years of genomic stasis in endosymbiotic bacteria. Science 296:2376–2379

    Article  CAS  PubMed  Google Scholar 

  • Teixeira L, Ferreira Á, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:e1000002

    Article  PubMed Central  Google Scholar 

  • Terradas G, Joubert DA, McGraw EA (2017) The RNAi pathway plays a small part in Wolbachia-mediated blocking of dengue virus in mosquito cells. Sci Rep 7:43847

    Article  PubMed  PubMed Central  Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028

    Article  CAS  PubMed  Google Scholar 

  • Timmermans MJTN, Marien J, Roelofs D, van Straalen NM, Ellers J (2004) Evidence for multiple origins of Wolbachia infection in springtails. Pedobiologia 48:469–475

    Article  Google Scholar 

  • Turelli M (1994) Evolution of incompatibility-inducing microbes and their hosts. Evolution 48:1500–1513

    PubMed  Google Scholar 

  • Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353:440–442

    Article  CAS  PubMed  Google Scholar 

  • Van den Hurk AF, Hall-Mendelin S, Pyke AT, Frentiu FD, McElroy K, Day A, Higgs S, O’Neill SL (2012) Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis 6:e1892

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasquez CJ, Stouthamer R, Jeong G, Morse JG (2011) Discovery of a CI-inducing Wolbachia and its associated fitness costs in the biological control agent Aphytis melinus DeBach (Hymenoptera: Aphelinidae). Biol Control 58:192–198

    Article  Google Scholar 

  • Walker T, Klasson L, Sebaihia M, Sanders MJ, Thomson NR, Parkhill J, Sinkins SP (2007) Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia from the Culex pipiens group. BMC Biol 5:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Su X-M, Wen J, Jiang L-Y, Qiao G-X (2014) Widespread infection and diverse infection patterns of Wolbachia in Chinese aphids. Insect Sci 21:313–325

    Article  PubMed  Google Scholar 

  • Weaver SC (2014) Arrival of chikungunya virus in the new world: prospects for spread and impact on public health. PLoS Negl Trop Dis 8:e2921

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR (2006) Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80:5059–5064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks AR, Breeuwer JA (2001) Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proc R Soc Lond Biol 268:2245–2251

    Article  CAS  Google Scholar 

  • Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol 5:e114

    Article  PubMed  PubMed Central  Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609

    Article  CAS  PubMed  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    Article  CAS  PubMed  Google Scholar 

  • Wilke ABB, Marrelli MT (2015) Paratransgenesis: a promising new strategy for mosquito vector control. Parasit Vectors 8:1

    Article  Google Scholar 

  • Wolbachia MLST databases (2006). http://pubmlst.org/wolbachia/. Accessed 16 Aug 2018

  • Wong ZS, Brownlie JC, Johnson KN (2015) Oxidative stress correlates with Wolbachia-mediated antiviral protection in Wolbachia-Drosophila associations. Appl Environ Microbiol 81:3001–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2004) Global strategic framework for integrated vector management, WHO/CDS/CPE/PVC/2004.10. WHO, Geneva

    Google Scholar 

  • World Health Organization (2014) A global brief on vector-borne diseases. World Health Organization, Geneva. Available from: http:// www.who.int/campaigns/world-healthday/2014/global-brief/en/. Accessed 10 May 2015

    Google Scholar 

  • World Mosquito Program (2008). http://www.eliminatedengue.com. Accessed 22 Oct 2018

  • Wright JD (1979) The etiology and biology of cytoplasmic incompatibility in Aedes scutellaris group. PhD thesis, University of California, Los Angeles, p 199

    Google Scholar 

  • Wright JD, Sjostrand FS, Portaro JK, Barr AR (1978) The ultrastructure of the rickettsia-like microorganism Wolbachia pipientis and associated virus like bodies in the mosquito Culex pipiens. J Ultrastruct Res 63:79–85

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AO, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IA, Nelson KE, Tettelin H, O’Neill SL, Eisen JA (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:327–341

    Article  CAS  Google Scholar 

  • ** Z, Gavotte L, **e Y, Dobson SL (2008) Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics 9:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Yen JH (1972) The microorganismal basis of cytoplasmic incompatibility in the Culex pipiens complex. PhD thesis, University of California, Los Angeles

    Google Scholar 

  • Yen JH (1975) Transovarial transmission of Rickettsia-like microorganisms in mosquitoes. Ann N Y Acad Sci 266:152–161

    Article  CAS  PubMed  Google Scholar 

  • Yen JH, Barr AR (1971) The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invert Pathol 22:242–250

    Article  Google Scholar 

  • Zchori-Fein E, Roush RT, Hunter MS (1992) Male production induced by antibiotic treatment in Encarsia formosa (Hymenoptera: Aphelinidae), an asexual species. Cell Mol Life Sci 48:102–105

    Article  Google Scholar 

  • Zeh DW, Zeh JA, Bonilla MM (2005) Wolbachia, sex ratio bias and apparent male killing in the harlequin beetle riding pseudoscorpion. Heredity 95:41–49

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Hussain M, O’Neill SL, Asgari S (2013) Wolbachia uses a host micro RNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti. PNAS USA 110:10276–10281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Rousset F, O’Neill SL (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 265:509–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohanty, I., Rath, A., Hazra, R.K. (2021). Wolbachia: Biological Control Strategy Against Arboviral Diseases. In: Tyagi, B.K. (eds) Genetically Modified and other Innovative Vector Control Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-2964-8_11

Download citation

Publish with us

Policies and ethics

Navigation