An Overarching Review on Taxonomy of Routing Metric in Concurrence with Trust and Security for CRAHN

  • Conference paper
  • First Online:
Optical and Wireless Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 771))

Abstract

Cognitive radio technology is introduced to solve the problem of spectrum paucity by providing efficient, dynamic and opportunistic use of frequency bands. Wireless devices with cognitive capability refer as cognitive radio users and when these devices topologically arranged in ad hoc manner without any centralized entity termed as cognitive radio ad hoc network (CRAHN). Ironically, however CRAHN deals with major issues like network topology, frequency band change, and unpredictable PU behavior and spectrum variation temporally and spatially. In this paper, we present survey of recent routing protocols in CRAHN. Initially, routing challenges in CRAHN is addressed. Thereafter, we present the different routing metric which is classified into seven categories like end-to-end Delay, hop count, PDR, reliability, throughput, energy efficient and location centric. After surveying above routing protocols, we have seen that reactive routing protocol is more popular among all. This survey also focuses on routing protocols that have considered two key issues for improving Path trustworthiness and data security while communication. It also shed light on the open issues for designing and implementing the routing protocols in CRAHN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akyildiz IF, Lee WY, Vuran MC, Mohanty S (2006) Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput Netw 50(13):2127–2159

    Article  Google Scholar 

  2. Akyildiz I, Altunbasak Y, Fekri F, Sivakumar R (2004) AdaptNet: an adaptive protocol suite for the next-generation wireless Internet. IEEE Commun Mag 42(3):128–136

    Article  Google Scholar 

  3. Salim S, Moh S (2013) On-demand routing protocols for cognitive radio ad hoc networks. EURASIP J Wirel Commun Netw 2013(1):102

    Article  Google Scholar 

  4. Meghanathan N, Fanuel M (2015, Apr) A minimum channel switch routing protocol for cognitive radio ad hoc networks. In: 2015 12th international conference on information technology-new generations. IEEE, pp 280–285

    Google Scholar 

  5. Cheng G, Liu W, Li Y, Cheng W (2007, June) Joint on-demand routing and spectrum assignment in cognitive radio networks. In: 2007 IEEE international conference on communications. IEEE, pp 6499–6503

    Google Scholar 

  6. Song Z, Shen B, Zhou Z, Kwak KS (2009, Sept) Improved ant routing algorithm in cognitive radio networks. In: 2009 9th international symposium on communications and information technology. IEEE, pp 110–114

    Google Scholar 

  7. Zhu GM, Akyildiz IF, Kuo GS (2008, Nov) STOD-RP: a spectrum-tree based on-demand routing protocol for multi-hop cognitive radio networks. In: IEEE GLOBECOM 2008–2008 IEEE global telecommunications conference. IEEE, pp 1–5

    Google Scholar 

  8. Sampath A, Yang L, Cao L, Zheng H, Zhao BY (2008) High throughput spectrum-aware routing for cognitive radio networks. Proc IEEE Crowncom

    Google Scholar 

  9. Pefkianakis I, Wong SH, Lu S (2008, Oct) SAMER: spectrum aware mesh routing in cognitive radio networks. In: 2008 3rd IEEE symposium on new frontiers in dynamic spectrum access networks. IEEE, pp 1–5

    Google Scholar 

  10. Rehman RA, Sher M, Afzal MK (2012, Oct) Efficient delay and energy based routing in cognitive radio ad hoc networks. In: 2012 international conference on emerging technologies. IEEE, pp 1–5

    Google Scholar 

  11. Zhang Y, Song F, Deng Z, Li C (2013, Mar) An energy-aware routing for cognitive radio ad hoc networks. In: 2013 IEEE third international conference on information science and technology (ICIST). IEEE, pp 1397–1401

    Google Scholar 

  12. Rehman RA, Kim BS (2014) L2ER: low-latency and energy-based routing protocol for cognitive radio ad hoc networks. Int J Distrib Sensor Netw 10(9):963202

    Google Scholar 

  13. Habak K, Abdelatif M, Hagrass H, Rizc K, Youssef M (2013, Jan) A location-aided routing protocol for cognitive radio networks. In: 2013 international conference on computing, networking and communications (ICNC). IEEE, pp 729–733

    Google Scholar 

  14. Chowdhury KR, Felice MD (2009) Search: a routing protocol for mobile cognitive radio ad-hoc networks. Comput Commun 32(18):1983–1997

    Article  Google Scholar 

  15. Bădoi CI, Croitoru V, Prasad R (2010, June) IPSAG: an IP spectrum aware geographic routing algorithm proposal for multi-hop cognitive radio networks. In: 2010 8th international conference on communications. IEEE, pp 491–496

    Google Scholar 

  16. Huang X, Lu D, Li P, Fang Y (2011, June) Coolest path: spectrum mobility aware routing metrics in cognitive ad hoc networks. In: 2011 31st international conference on distributed computing systems. IEEE, pp 182–191

    Google Scholar 

  17. Cacciapuoti AS, Calcagno C, Caleffi M, Paura L (2010, Oct) CAODV: Routing in mobile ad-hoc cognitive radio networks. In: 2010 IFIP wireless days. IEEE, pp 1–5

    Google Scholar 

  18. Abedi O, Berangi R (2013) Mobility assisted spectrum aware routing protocol for cognitive radio ad hoc networks. J Zhejiang Univ Sci C 14(11):873–886

    Article  Google Scholar 

  19. Abedi O, Berangi R (2014) Beaconless dynamic spectrum-aware routing protocol for cognitive radio ad hoc networks. Arab J Sci Eng 39(5):3941–3952

    Article  Google Scholar 

  20. Wang X, Kwon TT, Choi Y (2009, Sept) A multipath routing and spectrum access (MRSA) framework for cognitive radio systems in multi-radio mesh networks. In: Proceedings of the 2009 ACM workshop on Cognitive radio networks, pp 55–60

    Google Scholar 

  21. Gong L, Deng S, Tang W, Li S (2008, Oct) Anti-intermittence source routing protocol in distributed cognitive radio network. In: 2008 4th international conference on wireless communications, networking and mobile computing. IEEE, pp 1–6

    Google Scholar 

  22. Najafi B, Keshavarz-Haddad A, Jamshidi A (2014, Sept) A new spectrum path diversity routing protocol based on AODV for cognitive radio ad hoc networks. In: 7th international symposium on telecommunications (IST'2014). IEEE, pp 585–589

    Google Scholar 

  23. Zhong Z, Wei T (2010, Oct) Cognitive routing metric with improving capacity (CRM-IC) for heterogeneous ad hoc network. In: 2010 international conference on information, networking and automation (ICINA), vol 1. IEEE, pp V1-271

    Google Scholar 

  24. Chen J, Li H, Wu J (2010, May) WHAT: a novel routing metric for multi-hop cognitive wireless networks. In: The 19th annual wireless and optical communications conference (WOCC 2010). IEEE, pp 1–6

    Google Scholar 

  25. Rozner E, Seshadri J, Mehta Y, Qiu L (2009) SOAR: simple opportunistic adaptive routing protocol for wireless mesh networks. IEEE Trans Mob Comput 8(12):1622–1635

    Article  Google Scholar 

  26. Kar S, Sethi S, Sahoo RK (2018) A trust-based technique for secure spectrum access in cognitive radio networks. In: Progress in computing, analytics and networking. Springer, Singapore, pp 9–18

    Google Scholar 

  27. Kar S, Sethi S, Sahoo RK (2017) A multi-factor trust management scheme for secure spectrum sensing in cognitive radio networks. Wireless Pers Commun 97(2):2523–2540

    Article  Google Scholar 

  28. Li J, Feng Z, Wei Z, Feng Z, Zhang P (2014) Security management based on trust determination in cognitive radio networks. EURASIP J Adv Signal Process 2014(1):48

    Article  Google Scholar 

  29. Haque MM, Ahamed SI (2007, July) An omnipresent formal trust model (FTM) for pervasive computing environment. In: 31st annual international computer software and applications conference (COMPSAC 2007), vol 1. IEEE, pp 49–56

    Google Scholar 

  30. Zhang G, Chen Z, Tian L, Zhang D (2015) Using trust to establish a secure routing model in cognitive radio network. PloS One 10(9)

    Google Scholar 

  31. Rajaram S, Karuppiah AB, Kumar KV (2014) Secure routing path using trust values for wireless sensor networks. ar**v:1407.1972

  32. Khasawneh M, Agarwal A (2017) A secure and efficient authentication mechanism applied to cognitive radio networks. IEEE Access 5:15597–15608

    Article  Google Scholar 

  33. Alahmadi A, Abdelhakim M, Ren J, Li T (2014) Defense against primary user emulation attacks in cognitive radio networks using advanced encryption standard. IEEE Trans Inf Forensics Secur 9(5):772–781

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahuja, P., Sethi, P., Chauhan, N. (2022). An Overarching Review on Taxonomy of Routing Metric in Concurrence with Trust and Security for CRAHN. In: Tiwari, M., Maddila, R.K., Garg, A.K., Kumar, A., Yupapin, P. (eds) Optical and Wireless Technologies. Lecture Notes in Electrical Engineering, vol 771. Springer, Singapore. https://doi.org/10.1007/978-981-16-2818-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2818-4_58

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2817-7

  • Online ISBN: 978-981-16-2818-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation