Application of Nano Drug Delivery Systems in Inhibition of Tumors and Cancer Stem Cells

  • Chapter
  • First Online:
Advances in Nanomaterials-based Cell Biology Research
  • 408 Accesses

Abstract

For its high mortality rate, cancer has posed a significant threat to human’s lives. Every year, more than 3.4 million people died for cancer all over the world. The main therapeutic methods for cancer include surgery, chemotherapy, and radiotherapy. However, surgery is only conducted for patients with early-stage cancers; chemotherapy and radiotherapy have obvious side effects. In addition, many researches have indicated that cancer stem cells play a crucial role in tumor recurrence and multidrug resistance. Compared with traditional drug carriers, nano drug delivery systems have many advantages in targeting delivery, combination therapy, etc. In recent years, more and more nano drug systems are applied in clinical practice, and various multifunctional nano drug systems are designed to kill cancer stem cells. Our review introduced the main problems in anticancer therapy for cancer stem cells, and the developments of several nano drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hooper L, Anderson AS, Birch J, et al. Public awareness and healthcare professional advice for obesity as a risk factor for cancer in the UK: a cross-sectional survey. J Public Health. 2018;40(4):797–805.

    Article  Google Scholar 

  2. Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med. 2015;21(4):223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  CAS  PubMed  Google Scholar 

  5. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.

    CAS  PubMed  Google Scholar 

  7. Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011–21.

    Article  CAS  PubMed  Google Scholar 

  8. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.

    Article  CAS  PubMed  Google Scholar 

  9. Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A. Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol. 2013;108(3):378–87.

    Article  PubMed  Google Scholar 

  10. Nassar D, Blanpain C. Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol. 2016;11:47–76.

    Article  CAS  PubMed  Google Scholar 

  11. Friedmann-Morvinski D, Verma IM. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep. 2014;15(3):244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dubrovska A, Kim S, Salamone RJ, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A. 2009;106(1):268–73.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou J, Wulfkuhle J, Zhang H, et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A. 2007;104(41):16158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoffmeyer K, Raggioli A, Rudloff S, et al. Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science. 2012;336(6088):1549–54.

    Article  CAS  PubMed  Google Scholar 

  15. Cioffi M, Trabulo SM, Sanchez-Ripoll Y, et al. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut. 2015;64(12):1936–48.

    Article  CAS  PubMed  Google Scholar 

  16. Meng E, Mitra A, Tripathi K, et al. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling. PLoS ONE. 2014;9(9):e107142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wu Z-X, Teng Q-X, Cai C-Y, et al. Tepotinib reverses ABCB1-mediated multidrug resistance in cancer cells. Biochem Pharmacol. 2019;166:120–7.

    Article  CAS  PubMed  Google Scholar 

  18. Srivastava AK, Han C, Zhao R, et al. Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells. Proc Natl Acad Sci U S A. 2015;112(14):4411–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gold A, Eini L, Nissim-Rafinia M, et al. Spironolactone inhibits the growth of cancer stem cells by impairing DNA damage response. Oncogene. 2019;38(17):3103–18.

    Article  CAS  PubMed  Google Scholar 

  20. Liu YN, Yin JJ, Abou-Kheir W, et al. MiR-1 and miR-200 inhibit EMT via slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene. 2013;32(3):296–306.

    Article  CAS  PubMed  Google Scholar 

  21. Shuang Z-Y, Wu W-C, Xu J, et al. Transforming growth factor-β1-induced epithelial-mesenchymal transition generates ALDH-positive cells with stem cell properties in cholangiocarcinoma. Cancer Lett. 2014;354(2):320–8.

    Article  CAS  PubMed  Google Scholar 

  22. Wang F, Ma L, Zhang Z, et al. Hedgehog signaling regulates epithelial-mesenchymal transition in pancreatic cancer stem-like cells. J Cancer. 2016;7(4):408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao Y, Ruan B, Liu W, et al. Knockdown of CD44 inhibits the invasion and metastasis of hepatocellular carcinoma both in vitro and in vivo by reversing epithelial-mesenchymal transition. Oncotarget. 2015;6(10):7828–37.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dong W, Chen A, Chao X, et al. Chrysin inhibits proinflammatory factor-induced EMT phenotype and cancer stem cell-like features in HeLa cells by blocking the NF-κB/twist axis. Cell Physiol Biochem. 2019;52(5):1236–50.

    Article  PubMed  CAS  Google Scholar 

  25. Zhou P, Li B, Liu F, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer. Mol Cancer. 2017;16(1):52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bocci F, Gearhart-Serna L, Boareto M, et al. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci U S A. 2019;116(1):148–57.

    Article  CAS  PubMed  Google Scholar 

  27. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51(4):691–743.

    CAS  PubMed  Google Scholar 

  28. García SA, Weitz J, Schölch S. Circulating tumor cells. Methods Mol Biol. 1692;2018:213–9.

    Google Scholar 

  29. Lee S, Jung S, Koo H, et al. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo. Biomaterials. 2017;148:1–15.

    Article  CAS  PubMed  Google Scholar 

  30. Spitzbarth M, Scherer A, Schachtschneider A, Imming P, Polarz S, Drescher M. Time-, spectral- and spatially resolved EPR spectroscopy enables simultaneous monitoring of diffusion of different guest molecules in nano-pores. J Magn Reson. 2017;283:45–51.

    Article  CAS  PubMed  Google Scholar 

  31. Nichols JW, Bae YH. EPR: evidence and fallacy. J Control Release. 2014;190:451–64.

    Article  CAS  PubMed  Google Scholar 

  32. Masoudipour E, Kashanian S, Maleki N, Karamyan A, Omidfar K. A novel intracellular pH-responsive formulation for FTY720 based on PEGylated graphene oxide nano-sheets. Drug Dev Ind Pharm. 2018;44:1.

    Article  CAS  Google Scholar 

  33. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238–52.

    Article  CAS  PubMed  Google Scholar 

  34. Bangham AD, Standish MM, Watkins JC, Weissmann G. The diffusion of ions from a phospholipid model membrane system. Protoplasma. 1967;63(1):183–7.

    Article  CAS  PubMed  Google Scholar 

  35. Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta. 1973;298(4):1015–9.

    Article  CAS  PubMed  Google Scholar 

  36. Gregoriadis G, Ryman BE. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem J. 1971;124(5):58p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gregoriadis G. Drug entrapment in liposomes. FEBS Lett. 1973;36(3):292–6.

    Article  CAS  PubMed  Google Scholar 

  38. Juliano RL, Stamp D. Pharmacokinetics of liposome-encapsulated anti-tumor drugs. Studies with vinblastine, actinomycin D, cytosine arabinoside, and daunomycin. Biochem Pharmacol. 1978;27(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  39. Poste G, Papahadjopoulos D. Lipid vesicles as carriers for introducing materials into cultured cells: influence of vesicle lipid composition on mechanism(s) of vesicle incorporation into cells. Proc Natl Acad Sci U S A. 1976;73(5):1603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kimelberg HK, Tracy TF, Biddlecome SM, Bourke RS. The effect of entrapment in liposomes on the in vivo distribution of [3H]methotrexate in a primate. Cancer Res. 1976;36(8):2949–57.

    CAS  PubMed  Google Scholar 

  41. Kobayashi T, Tsukagoshi S, Sakurai Y. Enhancement of the cancer chemotherapeutic effect of cytosine arabinoside entrapped in liposomes on mouse leukemia L-1210. Gann. 1975;66(6):719–20.

    CAS  PubMed  Google Scholar 

  42. Mayhew E, Papahadjopoulos D, Rustum YM, Dave C. Inhibition of tumor cell growth in vitro and in vivo by 1-beta-D-arabinofuranosylcytosine entrapped within phospholipid vesicles. Cancer Res. 1976;36(12):4406–11.

    CAS  PubMed  Google Scholar 

  43. Alving CR, Steck EA, Chapman WL, et al. Therapy of leishmaniasis: superior efficacies of liposome-encapsulated drugs. Proc Natl Acad Sci U S A. 1978;75(6):2959–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kedar A, Mayhew E, Moore RH, Williams P, Murphy GP. Effect of actinomycin D-containing lipid vesicles on murine renal adenocarcinoma. J Surg Oncol. 1980;15(4):363–5.

    Article  CAS  PubMed  Google Scholar 

  45. Gabizon A, Dagan A, Goren D, Barenholz Y, Fuks Z. Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res. 1982;42(11):4734–9.

    CAS  PubMed  Google Scholar 

  46. Mehta R, Lopez-Berestein G, Hopfer R, Mills K, Juliano RL. Liposomal amphotericin B is toxic to fungal cells but not to mammalian cells. Biochim Biophys Acta. 1984;770(2):230–4.

    Article  CAS  PubMed  Google Scholar 

  47. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9:2.

    Article  CAS  Google Scholar 

  48. Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal drug delivery systems and anticancer. Drugs. 2018;23(4):907.

    Google Scholar 

  49. Munye MM, Ravi J, Tagalakis AD, McCarthy D, Ryadnov MG, Hart SL. Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector. Sci Rep. 2015;5:9292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Slingerland M, Guchelaar HJ, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today. 2012;17(3-4):160–6.

    Article  CAS  PubMed  Google Scholar 

  51. Mu LM, Ju RJ, Liu R, et al. Dual-functional drug liposomes in treatment of resistant cancers. Adv Drug Deliv Rev. 2017;115:46–56.

    Article  CAS  PubMed  Google Scholar 

  52. Briuglia ML, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5(3):231–42.

    Article  CAS  PubMed  Google Scholar 

  53. Demel RA, De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976;457(2):109–32.

    Article  CAS  PubMed  Google Scholar 

  54. Liu W, Wei F, Ye A, Tian M, Han J. Kinetic stability and membrane structure of liposomes during in vitro infant intestinal digestion: effect of cholesterol and lactoferrin. Food Chem. 2017;230:6–13.

    Article  CAS  PubMed  Google Scholar 

  55. Cogan U, Shinitzky M, Weber G, Nishida T. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry. 1973;12(3):521–8.

    Article  CAS  PubMed  Google Scholar 

  56. Kaddah S, Khreich N, Kaddah F, Charcosset C, Greige-Gerges H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem Toxicol. 2018;113:40–8.

    Article  CAS  PubMed  Google Scholar 

  57. Riaz MK, Riaz MA, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int J Mol Sci. 2018;19:1.

    Article  CAS  Google Scholar 

  58. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37.

    Article  CAS  PubMed  Google Scholar 

  59. Hoekstra D, Scherphof G. Effect of fetal calf serum and serum protein fractions on the uptake of liposomal phosphatidylcholine by rat hepatocytes in primary monolayer culture. Biochim Biophys Acta. 1979;551(1):109–21.

    Article  CAS  PubMed  Google Scholar 

  60. Gregoriadis G, Neerunjun DE. Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications. Eur J Biochem. 1974;47(1):179–85.

    Article  CAS  PubMed  Google Scholar 

  61. Juliano RL, Stamp D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun. 1975;63(3):651–8.

    Article  CAS  PubMed  Google Scholar 

  62. Hsu MJ, Juliano RL. Interactions of liposomes with the reticuloendothelial system. II: Nonspecific and receptor-mediated uptake of liposomes by mouse peritoneal macrophages. Biochim Biophys Acta. 1982;720(4):411–9.

    Article  CAS  PubMed  Google Scholar 

  63. Allen TM, Murray L, MacKeigan S, Shah M. Chronic liposome administration in mice: effects on reticuloendothelial function and tissue distribution. J Pharmacol Exp Ther. 1984;229(1):267–75.

    CAS  PubMed  Google Scholar 

  64. Abra RM, Bosworth ME, Hunt CA. Liposome disposition in vivo: effects of pre-dosing with lipsomes. Res Commun Chem Pathol Pharmacol. 1980;29(2):349–60.

    CAS  PubMed  Google Scholar 

  65. Kao YJ, Juliano RL. Interactions of liposomes with the reticuloendothelial system. Effects of reticuloendothelial blockade on the clearance of large unilamellar vesicles. Biochim Biophys Acta. 1981;677(3-4):453–61.

    Article  CAS  PubMed  Google Scholar 

  66. Hwang KJ, Padki MM, Chow DD, Essien HE, Lai JY, Beaumier PL. Uptake of small liposomes by non-reticuloendothelial tissues. Biochim Biophys Acta. 1987;901(1):88–96.

    Article  CAS  PubMed  Google Scholar 

  67. Allen TM, Chonn A. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 1987;223(1):42–6.

    Article  CAS  PubMed  Google Scholar 

  68. Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem. 1977;252(11):3582–6.

    Article  CAS  PubMed  Google Scholar 

  69. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268(1):235–7.

    Article  CAS  PubMed  Google Scholar 

  70. Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta. 1990;1029(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  71. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta. 1991;1066(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  72. Senior J, Delgado C, Fisher D, Tilcock C, Gregoriadis G. Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta. 1991;1062(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  73. Nie Y, Ji L, Ding H, et al. Cholesterol derivatives based charged liposomes for doxorubicin delivery: preparation, in vitro and in vivo characterization. Theranostics. 2012;2(11):1092–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol. 2004;83(3):97–111.

    Article  CAS  PubMed  Google Scholar 

  75. Dams ET, Laverman P, Oyen WJ, et al. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther. 2000;292(3):1071–9.

    CAS  PubMed  Google Scholar 

  76. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.

    Article  CAS  PubMed  Google Scholar 

  77. Chen B, Dai W, Mei D, et al. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system. J Control Release. 2016;241:68–80.

    Article  CAS  PubMed  Google Scholar 

  78. Ying X, Wen H, Lu WL, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release. 2010;141(2):183–92.

    Article  CAS  PubMed  Google Scholar 

  79. Gao JQ, Lv Q, Li LM, et al. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes. Biomaterials. 2013;34(22):5628–39.

    Article  CAS  PubMed  Google Scholar 

  80. Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. Nanomed Nanobiotechnol. 2017;9:5.

    Article  CAS  Google Scholar 

  81. Guo F, Yu M, Wang J, Tan F, Li N. Smart IR780 theranostic nanocarrier for tumor-specific therapy: hyperthermia-mediated bubble-generating and folate-targeted liposomes. ACS Appl Mater Interfaces. 2015;7(37):20556–67.

    Article  CAS  PubMed  Google Scholar 

  82. Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides. 2014;57:78–94.

    Article  CAS  PubMed  Google Scholar 

  83. Lopes de Menezes DE, Pilarski LM, Allen TM. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res. 1998;58(15):3320–30.

    CAS  PubMed  Google Scholar 

  84. Park JW, Hong K, Kirpotin DB, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res. 2002;8(4):1172–81.

    CAS  PubMed  Google Scholar 

  85. Vingerhoeds MH, Steerenberg PA, Hendriks JJ, et al. Immunoliposome-mediated targeting of doxorubicin to human ovarian carcinoma in vitro and in vivo. Br J Cancer. 1996;74(7):1023–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Goren D, Horowitz AT, Zalipsky S, Woodle MC, Yarden Y, Gabizon A. Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies. Br J Cancer. 1996;74(11):1749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kirpotin DB, Drummond DC, Shao Y, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006;66(13):6732–40.

    Article  CAS  PubMed  Google Scholar 

  88. Riviere K, Huang Z, Jerger K, Macaraeg N, Szoka FC. Antitumor effect of folate-targeted liposomal doxorubicin in KB tumor-bearing mice after intravenous administration. J Drug Target. 2011;19(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  89. Allen TM, Cleland LG. Serum-induced leakage of liposome contents. Biochim Biophys Acta. 1980;597(2):418–26.

    Article  CAS  PubMed  Google Scholar 

  90. Scherphof G, Roerdink F, Waite M, Parks J. Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochim Biophys Acta. 1978;542(2):296–307.

    Article  CAS  PubMed  Google Scholar 

  91. Cullis PR. Lateral diffusion rates of phosphatidylcholine in vesicle membranes: effects of cholesterol and hydrocarbon phase transitions. FEBS Lett. 1976;70(1):223–8.

    Article  CAS  PubMed  Google Scholar 

  92. McIntosh TJ. The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochim Biophys Acta. 1978;513(1):43–58.

    Article  CAS  PubMed  Google Scholar 

  93. Storm G, Roerdink FH, Steerenberg PA, de Jong WH, Crommelin DJ. Influence of lipid composition on the antitumor activity exerted by doxorubicin-containing liposomes in a rat solid tumor model. Cancer Res. 1987;47(13):3366–72.

    CAS  PubMed  Google Scholar 

  94. Diederich CJ. Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. Int J Hyperth. 2005;21(8):745–53.

    Article  Google Scholar 

  95. Chen KJ, Chaung EY, Wey SP, et al. Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor-specific chemotherapy. ACS Nano. 2014;8(5):5105–15.

    Article  CAS  PubMed  Google Scholar 

  96. Chen KJ, Liang HF, Chen HL, et al. A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery. ACS Nano. 2013;7(1):438–46.

    Article  CAS  PubMed  Google Scholar 

  97. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7.

    Article  CAS  PubMed  Google Scholar 

  98. Randles EG, Bergethon PR. A photodependent switch of liposome stability and permeability. Langmuir. 2013;29(5):1490–7.

    Article  CAS  PubMed  Google Scholar 

  99. Yamashita S, Yamashita J, Ogawa M. Overexpression of group II phospholipase A2 in human breast cancer tissues is closely associated with their malignant potency. Br J Cancer. 1994;69(6):1166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ji T, Li S, Zhang Y, et al. An MMP-2 responsive liposome integrating antifibrosis and chemotherapeutic drugs for enhanced drug perfusion and efficacy in pancreatic cancer. ACS Appl Mater Interfaces. 2016;8(5):3438–45.

    Article  CAS  PubMed  Google Scholar 

  101. Persidis A. Cancer multidrug resistance. Nat Biotechnol. 1999;17(1):94–5.

    Article  CAS  PubMed  Google Scholar 

  102. Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today. 2012;17(17-18):1044–52.

    Article  CAS  PubMed  Google Scholar 

  103. Tahover E, Patil YP, Gabizon AA. Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index: focus on liposomes. Anti-Cancer Drugs. 2015;26(3):241–58.

    Article  CAS  PubMed  Google Scholar 

  104. Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science. 1984;226(4673):466–8.

    Article  CAS  PubMed  Google Scholar 

  105. Fong CW. Platinum anti-cancer drugs: free radical mechanism of Pt-DNA adduct formation and anti-neoplastic effect. Free Radic Biol Med. 2016;95:216–29.

    Article  CAS  PubMed  Google Scholar 

  106. Ruttala HB, Ramasamy T, Gupta B, Choi HG, Yong CS, Kim JO. Multiple polysaccharide-drug complex-loaded liposomes: a unique strategy in drug loading and cancer targeting. Carbohydr Polym. 2017;173:57–66.

    Article  CAS  PubMed  Google Scholar 

  107. Gong Z, Chen D, **e F, et al. Codelivery of salinomycin and doxorubicin using nanoliposomes for targeting both liver cancer cells and cancer stem cells. Nanomedicine (Lond). 2016;11(19):2565–79.

    Article  CAS  Google Scholar 

  108. Xu X, Wang L, Xu HQ, Huang XE, Qian YD, **ang J. Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. APJCP. 2013;14(4):2591–4.

    PubMed  Google Scholar 

  109. Surapaneni MS, Das SK, Das NG. Designing Paclitaxel drug delivery systems aimed at improved patient outcomes: current status and challenges. ISRN Pharmacol. 2012;2012:623139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Liu Y, Fang J, Kim YJ, Wong MK, Wang P. Codelivery of doxorubicin and paclitaxel by cross-linked multilamellar liposome enables synergistic antitumor activity. Mol Pharm. 2014;11(5):1651–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu C, Tang DG. MicroRNA regulation of cancer stem cells. Cancer Res. 2011;71(18):5950–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu J, Meng T, Yuan M, et al. MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomedicine. 2016;11:6713–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kim S-S, Rait A, Kim E, et al. A nanoparticle carrying the p53 gene targets tumors including cancer stem cells, sensitizes glioblastoma to chemotherapy and improves survival. ACS Nano. 2014;8(6):5494–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lavi O, Gottesman MM, Levy D. The dynamics of drug resistance: a mathematical perspective. Drug Resist Updat. 2012;15(1-2):90–7.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rezzani R. Cyclosporine A and adverse effects on organs: histochemical studies. Prog Histochem Cytochem. 2004;39(2):85–128.

    Article  CAS  PubMed  Google Scholar 

  116. Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control. 2003;10(2):159–65.

    Article  PubMed  Google Scholar 

  117. Phillips MF, Quinlivan R. Calcium antagonists for Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2008;4:Cd004571.

    Google Scholar 

  118. Choi CH. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int. 2005;5:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Sexton E, Van Themsche C, LeBlanc K, Parent S, Lemoine P, Asselin E. Resveratrol interferes with AKT activity and triggers apoptosis in human uterine cancer cells. Mol Cancer. 2006;5:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Meng J, Guo F, Xu H, Liang W, Wang C, Yang XD. Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo. Sci Rep. 2016;6:22390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yokoyama M, Kwon GS, Okano T, Sakurai Y, Seto T, Kataoka K. Preparation of micelle-forming polymer-drug conjugates. Bioconjug Chem. 1992;3(4):295–301.

    Article  CAS  PubMed  Google Scholar 

  122. Shan X, Yuan Y, Liu C, Tao X, Sheng Y, Xu F. Influence of PEG chain on the complement activation suppression and longevity in vivo prolongation of the PCL biomedical nanoparticles. Biomed Microdevices. 2009;11(6):1187–94.

    Article  CAS  PubMed  Google Scholar 

  123. Suh JW, Lee J-S, Ko S, Lee HG. Preparation and characterization of mucoadhesive buccal nanoparticles using chitosan and dextran sulfate. J Agric Food Chem. 2016;64(26):5384–8.

    Article  CAS  PubMed  Google Scholar 

  124. Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol. 2014;5:77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Zhang X, Huang Y, Li S. Nanomicellar carriers for targeted delivery of anticancer agents. Ther Deliv. 2014;5(1):53–68.

    Article  PubMed  CAS  Google Scholar 

  126. Yokoyama M, Satoh A, Sakurai Y, et al. Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J Control Release. 1998;55(2-3):219–29.

    Article  CAS  PubMed  Google Scholar 

  127. Li Y, Zhang T, Liu Q, He J. PEG-derivatized dual-functional nanomicelles for improved cancer therapy. Front Pharmacol. 2019;10:808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kore G, Kolate A, Nej A, Misra A. Polymeric micelle as multifunctional pharmaceutical carriers. J Nanosci Nanotechnol. 2014;14(1):288–307.

    Article  CAS  PubMed  Google Scholar 

  129. Prabhakar U, Maeda H, Jain RK, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56(11):1649–59.

    Article  CAS  PubMed  Google Scholar 

  131. Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci U S A. 2003;100(10):6039–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hogarth PM, Pietersz GA. Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat Rev Drug Discov. 2012;11(4):311–31.

    Article  CAS  PubMed  Google Scholar 

  133. Vergote IB, Marth C, Coleman RL. Role of the folate receptor in ovarian cancer treatment: evidence, mechanism, and clinical implications. Cancer Metastasis Rev. 2015;34(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  134. Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release. 2004;96(2):273–83.

    Article  CAS  PubMed  Google Scholar 

  135. Abou-ElNaga A, Mutawa G, El-Sherbiny IM, et al. Novel nano-therapeutic approach actively targets human ovarian cancer stem cells after xenograft into nude mice. Int J Mol Sci. 2017;18:4.

    Article  CAS  Google Scholar 

  136. Ke X-Y, Lin Ng VW, Gao S-J, Tong YW, Hedrick JL, Yang YY. Co-delivery of thioridazine and doxorubicin using polymeric micelles for targeting both cancer cells and cancer stem cells. Biomaterials. 2014;35(3):1096–108.

    Article  CAS  PubMed  Google Scholar 

  137. Li L, Cui D, Ye L, et al. Codelivery of salinomycin and docetaxel using poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles to target both gastric cancer cells and cancer stem cells. Anti-Cancer Drugs. 2017;28:9.

    Article  Google Scholar 

  138. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13(6):472–82.

    Article  CAS  PubMed  Google Scholar 

  139. Krishnamurthy S, Ng VWL, Gao S, Tan M-H, Hedrick JL, Yang YY. Codelivery of dual drugs from polymeric micelles for simultaneous targeting of both cancer cells and cancer stem cells. Nanomedicine. 2015;10(18):2819–32.

    Article  CAS  PubMed  Google Scholar 

  140. Osada K, Christie RJ, Kataoka K. Polymeric micelles from poly(ethylene glycol)-poly(amino acid) block copolymer for drug and gene delivery. J R Soc Interface. 2009;6(Suppl 3):S325–S39.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Zheng C, Zheng M, Gong P, et al. Polypeptide cationic micelles mediated co-delivery of docetaxel and siRNA for synergistic tumor therapy. Biomaterials. 2013;34(13):3431–8.

    Article  CAS  PubMed  Google Scholar 

  142. Kinoh H, Miura Y, Chida T, et al. Nanomedicines eradicating cancer stem-like cells in vivo by pH-triggered intracellular cooperative action of loaded drugs. ACS Nano. 2016;10(6):5643–55.

    Article  CAS  PubMed  Google Scholar 

  143. Peng C-L, Tsai H-M, Yang S-J, et al. Development of thermosensitive poly(n-isopropylacrylamide-co-((2-dimethylamino) ethyl methacrylate))-based nanoparticles for controlled drug release. Nanotechnology. 2011;22(26):265608.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronghui Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

**ao, D., Zhou, R. (2021). Application of Nano Drug Delivery Systems in Inhibition of Tumors and Cancer Stem Cells. In: Lin, Y., Zhou, R. (eds) Advances in Nanomaterials-based Cell Biology Research. Springer, Singapore. https://doi.org/10.1007/978-981-16-2666-1_4

Download citation

Publish with us

Policies and ethics

Navigation