Design Optimization of Solar Thermal Energy Storage Tank: Using the Stratification Coefficient

  • Conference paper
  • First Online:
Machine Learning, Advances in Computing, Renewable Energy and Communication

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 768))

  • 842 Accesses

Abstract

Thermal stratification is a technique for maintaining separate layers of fluid having different temperatures. It plays a significant role in creating a large thermal gradient which in turn helps in storing more thermal energy in a solar thermal energy storage system. This paper investigates the effect of storage tank variables in terms of aspect ratio, equivalent diameter and its relationship with average stratification coefficient by varying them to different ranges to propose the optimized models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Twidell J, Weir T (2015) Renewable energy resources. Routledge, London, UK

    Google Scholar 

  2. Sarbu I, Sebarchievici C (2016) Solar heating and cooling: fundamentals, experiments and applications. Elsevier, Oxford, UK

    Google Scholar 

  3. Saito A (2002) Recent advances in research on cold thermal energy storage. Int J Refrig 25:177–189

    Article  Google Scholar 

  4. Hasnain SM (1998) Review on sustainable thermal energy storage technologies, part II: cool thermal storage. Energy Convers Manage 39:1139–1153

    Article  Google Scholar 

  5. Elhab BR, Sopian K, Mat S, Lim C, Sulaiman MY, Ruslan MH (2012) Optimizing tilt angles and orientations of solar panels for Kuala Lumpur, Malaysia. Science

    Google Scholar 

  6. Kalra J, Raghav G, Nagpal M (2016) Parametric Study of Satratification in packed bed sensible heat, solar energy storage system. Appl Solar Energy 52(4):259–264

    Article  Google Scholar 

  7. Fatema N et al (2021) Intelligent data-analytics for condition monitoring: smart grid applications. Elsevier, 268 pp. ISBN: 9780323855112

    Google Scholar 

  8. Aggarwal S et al (2020) Meta heuristic and evolutionary computation: algorithms and applications. Springer Nature, Berlin, 949 pp. https://doi.org/10.1007/978-981-15-7571-6. ISBN 978-981-15-7571-6

  9. Yadav AK et al (2020) Soft computing in condition monitoring and diagnostics of electrical and mechanical systems. Springer Nature, Berlin, 496 pp. https://doi.org/10.1007/978-981-15-1532-3. ISBN 978-981-15-1532-3

  10. Smriti S et al (2019) Applications of artificial intelligence techniques in engineering, vol 1. Springer Nature, 643 pp. https://doi.org/10.1007/978-981-13-1819-1. ISBN 978-981-13-1819-1

  11. Gopal et al (2021) Digital transformation through advances in artificial intelligence and machine learning. J Intell Fuzzy Syst. Pre-press 1–8. https://doi.org/10.3233/JIFS-189787

  12. Jafar A et al (2021) AI and machine learning paradigms for health monitoring system: intelligent data analytics. Springer Nature, Berlin, 496 pp. https://doi.org/10.1007/978-981-33-4412-9. ISBN 978-981-33-4412-9

  13. Smriti S et al (2018) Special issue on intelligent tools and techniques for signals, machines and automation. J Intell Fuzzy Syst 35(5):4895–4899. https://doi.org/10.3233/JIFS-169773

  14. Kumar A, Shukla SK (2015) A review on thermal energy storage unit for solar thermal power plant applications. Energy Procedia 74:462–469

    Article  Google Scholar 

  15. Xu B, Li P, Chan C (2015) Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy 160:286–307

    Article  Google Scholar 

  16. Zhang H, Baeyens J, Cáceres G, Degrève J, Lv Y (2016) Thermal energy storage: recent developments and practical aspects. Prog Energy Combust Sci 53:1–40

    Article  Google Scholar 

  17. Cárdenas B, León N (2013) High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhance-ment techniques. Renew Sustain Energy Rev 27:724–737

    Article  Google Scholar 

  18. Liu M, Saman W, Bruno F (2012) Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energy Rev 16:2118–2132

    Article  Google Scholar 

  19. Brumleve TD (1974) Sensible heat storage in liquids, solar energy technology division. Sandia Laboratories Report SLL-73-0263. Livermore, CA 94550, United States

    Google Scholar 

  20. Wu L, Bannerot RB (1987) Experimental study of the effect of water extraction on thermal stratification

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalra, J., Pant, R., Negi, P., kumar, V., Pant, S., Tiwari, S. (2022). Design Optimization of Solar Thermal Energy Storage Tank: Using the Stratification Coefficient. In: Tomar, A., Malik, H., Kumar, P., Iqbal, A. (eds) Machine Learning, Advances in Computing, Renewable Energy and Communication. Lecture Notes in Electrical Engineering, vol 768. Springer, Singapore. https://doi.org/10.1007/978-981-16-2354-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2354-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2353-0

  • Online ISBN: 978-981-16-2354-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation