Advances in Bioethanol Production: Processes and Technologies

  • Chapter
  • First Online:
Bioenergy Research: Commercial Opportunities & Challenges

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 511 Accesses

Abstract

Fossil fuels are the primary source of energy all over the world but generate undesirable health and environmental impacts. Biofuels are considered as the most potential alternative renewable sources of energy that can substitute fossil fuels. Bioethanol is currently the most important biofuel and produced from starch and lignocellulosic biomass. The process of production of bioethanol from biomass includes hydrolysis, fermentation and product purification. First-generation bioethanol is produced from starch obtained from various food crops leading to food vs fuel dilemma. Second-generation bioethanol can be produced from non-edible, non-food crops and waste biomass, but this process needs an additional expensive step of pretreatment. Many different methods of pretreatment are available, each with its own advantages and disadvantages: physical, physico-chemical, chemical and biological methods. Selection of the optimal and appropriate pretreatment methods, as well as other stages of the production of bioethanol, is important for the generation of bioethanol on a commercial scale. The present chapter discusses on different types of raw materials and biomass used and various steps and processes involved in the conversion of biomass into bioethanol. The chapter also describes the recent advances made and various strategies employed for improving technology of bioethanol production and making it commercially viable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ab Rahim AH, Man Z, Sarwono A, Muhammad N, Khan AS, Hamzah WSW, Elsheikh YA (2020) Probe sonication assisted ionic liquid treatment for rapid dissolution of lignocellulosic biomass. Cellulose 27(4):2135–2148

    Article  CAS  Google Scholar 

  • Abo BO, Gao M, Wang Y, Wu C, Ma H, Wang Q (2019) Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes. Rev Environ Health 34(1):57–68

    Article  CAS  PubMed  Google Scholar 

  • Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sust Energ Rev 66:631–653

    Article  CAS  Google Scholar 

  • Aguilar-Reynosa A, Romani A, Rodriguez-Jasso RM, Aguilar CN, Garrote G, Ruiz HA (2017) Microwave heating processing as alternative of pretreatment in second-generation biorefinery: an overview. Energy Convers Manag 136:50–65

    Article  CAS  Google Scholar 

  • Ahorsu R, Medina F, Constantí M (2018) Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: a review. Energies 11(12):3366

    Article  CAS  Google Scholar 

  • Akhtar N, Gupta K, Goyal D, Goyal A (2016) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustain Energy 35(2):489–511

    Article  CAS  Google Scholar 

  • Akhtar N, Goyal D, Goyal A (2017) Characterization of microwave-alkali-acid pre-treated rice straw for optimization of ethanol production via simultaneous saccharification and fermentation (SSF). Energy Convers Manag 141:133–144

    Article  CAS  Google Scholar 

  • Alayoubi R, Mehmood N, Husson E, Kouzayha A, Tabcheh M, Chaveriat L, Gosselin I (2020) Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield. Renew Energy 145:1808–1816

    Article  CAS  Google Scholar 

  • Ali SS, Nugent B, Mullins E, Doohan FM (2016) Fungal-mediated consolidated bioprocessing: the potential of Fusarium oxysporum for the lignocellulosic ethanol industry. AMB Express 6(1):13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alio MA, Tugui OC, Vial C, Pons A (2019) Microwave-assisted organosolv pretreatment of a sawmill mixed feedstock for bioethanol production in a wood biorefinery. Bioresour Technol 276:170–176

    Article  PubMed  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Alvira P, Negro MJ, Ballesteros I, González A, Ballesteros M (2016) Steam explosion for wheat straw pretreatment for sugars production. Bioethanol 1:66–75

    Google Scholar 

  • Amini N, Haritos VS, Tanksale A (2018) Microwave assisted pretreatment of eucalyptus sawdust enhances enzymatic saccharification and maximizes fermentable sugar yield. Renew Energy 127:653–660

    Article  CAS  Google Scholar 

  • Amoah J, Ishizue N, Ishizaki M, Yasuda M, Takahashi K, Ninomiya K, Ogino C (2017) Development and evaluation of consolidated bioprocessing yeast for ethanol production from ionic liquid-pretreated bagasse. Bioresour Technol 245:1413–1420

    Article  CAS  PubMed  Google Scholar 

  • Amore A, Faraco V (2012) Potential of fungi as category I Consolidated BioProcessing organisms for cellulosic ethanol production. Renew Sust Energ Rev 16(5):3286–3301

    Article  CAS  Google Scholar 

  • Annamalai N, Al Battashi H, Anu SN, Al Azkawi A, Al Bahry S, Sivakumar N (2020) Enhanced bioethanol production from waste paper through separate hydrolysis and fermentation. Waste Biomass Valoriz 11(1):121–131

    Article  CAS  Google Scholar 

  • Araque E, Parra C, Freer J, Contreras D, Rodríguez J, Mendonça R, Baeza J (2008) Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzym Microb Technol 43(2):214–219

    Article  CAS  Google Scholar 

  • Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77(23):8288–8294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aro EM (2016) From first generation biofuels to advanced solar biofuels. Ambio 45(1):24–31

    Article  CAS  Google Scholar 

  • Arora A, Priya S, Sharma P, Sharma S, Nain L (2016) Evaluating biological pretreatment as a feasible methodology for ethanol production from paddy straw. Biocatal Agric Biotechnol 8:66–72

    Article  Google Scholar 

  • Asadi N, Zilouei H (2017) Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresour Technol 227:335–344

    Article  CAS  PubMed  Google Scholar 

  • Avagyan AB (2008) A contribution to global sustainable development: inclusion of microalgae and their biomass in production and bio cycles. Clean Techn Environ Policy 10(4):313–317

    Article  Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282

    Article  CAS  Google Scholar 

  • Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573

    Article  CAS  Google Scholar 

  • Banat FA, Simandl J (1999) Membrane distillation for dilute ethanol: separation from aqueous streams. J Membr Sci 163(2):333–348

    Article  CAS  Google Scholar 

  • Baramee S, Siriatcharanon AK, Ketbot P, Teeravivattanakit T, Waeonukul R, Pason P, Phitsuwan P (2020) Biological pretreatment of rice straw with cellulase-free xylanolytic enzyme-producing Bacillus firmus K-1: structural modification and biomass digestibility. Renew Energy 160:555–563

    Article  CAS  Google Scholar 

  • Baruah J, Nath BK, Sharma R, Kumar S, Deka RC, Baruah DC, Kalita E (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6:141

    Article  Google Scholar 

  • Bastos RG (2018) Biofuels from microalgae: bioethanol. In: Jacob-Lopes E, Zepka LQ, Queiroz MI (eds) Energy from microalgae. Springer, Cham, pp 229–246

    Chapter  Google Scholar 

  • Behera S, Mohanty RC, Ray RC (2011) Ethanol production from mahula (Madhuca latifolia L.) flowers with immobilized cells of Saccharomyces cerevisiae in Luffa cylindrica L. sponge discs. Appl Energy 88(1):212–215

    Article  CAS  Google Scholar 

  • Bertrand E, Vandenberghe LP, Soccol CR, Sigoillot JC, Faulds C (2016) First generation bioethanol. In: Soccol C, Brar S, Faulds C, Ramos L (eds) Green fuels technology. Springer, Cham, pp 175–212

    Chapter  Google Scholar 

  • Binod P, Satyanagalakshmi K, Sindhu R, Janu KU, Sukumaran RK, Pandey A (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew Energy 37(1):109–116

    Article  CAS  Google Scholar 

  • Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Keasling JD (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci 108(50):19949–19954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boluda-Aguilar M, García-Vidal L, del Pilar González-Castañeda F, López-Gómez A (2010) Mandarin peel wastes pretreatment with steam explosion for bioethanol production. Bioresour Technol 101(10):3506–3513

    Article  CAS  PubMed  Google Scholar 

  • Borah AJ, Singh S, Goyal A, Moholkar VS (2016) An assessment of the potential of invasive weeds as multiple feedstocks for biofuel production. RSC Adv 6(52):47151–47163

    Article  CAS  Google Scholar 

  • Branco RH, Serafim LS, Xavier AM (2019) Second generation bioethanol production: on the use of pulp and paper industry wastes as feedstock. Fermentation 5(1):4

    Article  CAS  Google Scholar 

  • Brethauer S, Studer MH (2014) Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ Sci 7(4):1446–1453

    Article  CAS  Google Scholar 

  • Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7

    Article  CAS  PubMed  Google Scholar 

  • Burke MJ, Stephens JC (2017) Energy democracy: goals and policy instruments for sociotechnical transitions. Energy Res Soc Sci 33:35–48

    Article  Google Scholar 

  • Carrillo-Nieves D, Alanís MJR, de la Cruz Quiroz R, Ruiz HA, Iqbal HM, Parra-Saldívar R (2019) Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renew Sust Energ Rev 102:63–74

    Article  CAS  Google Scholar 

  • Cha M, Chung D, Elkins JG, Guss AM, Westpheling J (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 6(1):1–8

    Article  CAS  Google Scholar 

  • Chandel AK, Singh OV, Rao LV (2010) Biotechnological applications of hemicellulosic derived sugars: state-of-the-art. In: Sustainable biotechnology. Springer, Dordrecht, pp 63–81

    Chapter  Google Scholar 

  • Chen H, Fu X (2016) Industrial technologies for bioethanol production from lignocellulosic biomass. Renew Sust Energ Rev 57:468–478

    Article  CAS  Google Scholar 

  • Chen WC, Lin YC, Ciou YL, Chu IM, Tsai SL, Lan JCW, Wei YH (2017) Producing bioethanol from pretreated-wood dust by simultaneous saccharification and co-fermentation process. J Taiwan Inst Chem Eng 79:43–48

    Article  CAS  Google Scholar 

  • Chen L, Du JL, Zhan YJ, Li JA, Zuo RR, Tian S (2018) Consolidated bioprocessing for cellulosic ethanol conversion by cellulase–xylanase cell-surfaced yeast consortium. Prep Biochem Biotechnol 48(7):653–661

    Article  CAS  PubMed  Google Scholar 

  • Cherpozat L, Loranger E, Daneault C (2017) Ultrasonic pretreatment effects on the bio-oil yield of a laboratory-scale slow wood pyrolysis. J Anal Appl Pyrolysis 126:31–38

    Article  CAS  Google Scholar 

  • Chovau S, Degrauwe D, Van der Bruggen B (2013) Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renew Sust Energ Rev 26:307–321

    Article  CAS  Google Scholar 

  • Chundawat SP, Pal RK, Zhao C, Campbell T, Teymouri F, Videto J, Balan V (2020) Ammonia fiber expansion (AFEX) pretreatment of lignocellulosic biomass. J Vis Exp 158:e57488

    Google Scholar 

  • Chung D, Farkas J, Westpheling J (2013) Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol Biofuels 6(1):82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci 111(24):8931–8936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claassen PAM, Van Lier JB, Contreras AL, Van Niel EWJ, Sijtsma L, Stams AJM, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52(6):741–755

    Article  CAS  Google Scholar 

  • da Silva Machado A, Ferraz A (2017) Biological pretreatment of sugarcane bagasse with basidiomycetes producing varied patterns of biodegradation. Bioresour Technol 225:17–22

    Article  CAS  Google Scholar 

  • Dahadha S, Amin Z, Bazyar Lakeh AA, Elbeshbishy E (2017) Evaluation of different pretreatment processes of lignocellulosic biomass for enhanced biomethane production. Energy Fuel 31:10335–10347

    Article  CAS  Google Scholar 

  • Dai L, Wang Y, Liu Y, Ruan R (2020) Microwave-assisted pyrolysis of formic acid pretreated bamboo sawdust for bio-oil production. Environ Res 182:108988

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Newcomb M, Wu JD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69(1):124–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshavath NN, Dasu VV, Goud VV, Rao PS (2017) Development of dilute sulfuric acid pretreatment method for the enhancement of xylose fermentability. Biocatal Agric Biotechnol 11:224–230

    Article  Google Scholar 

  • Dey P, Pal P, Kevin JD, Das DB (2020) Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process–a critical review. Rev Chem Eng 36(3):333–367

    Article  Google Scholar 

  • di Bitonto L, Reynel-Avila HE, Mendoza-Castillo DI, Pastore C, Bonilla-Petriciolet A (2019) Mexican biomass wastes: valorization for potential application in bioenergy. Bulg Chem Commun 51(B):99–102

    Google Scholar 

  • Dimos K, Paschos T, Louloudi A, Kalogiannis KG, Lappas AA, Papayannakos N, Mamma D (2019) Effect of various pretreatment methods on bioethanol production from cotton stalks. Fermentation 5(1):5

    Article  CAS  Google Scholar 

  • Djioleu A, Carrier DJ (2016) Effects of dilute acid pretreatment parameters on sugar production during biochemical conversion of switchgrass using a full factorial design. ACS Sustain Chem Eng 4(8):4124–4130

    Article  CAS  Google Scholar 

  • Dragone G, Fernandes BD, Vicente AA, Teixeira JA (2010) Third generation biofuels from microalgae. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and biotechnology. Formatex, Mumbai, pp 1355–1366

    Google Scholar 

  • Duque A, Manzanares P, Ballesteros M (2017) Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications. Renew Energy 114:1427–1441

    Article  CAS  Google Scholar 

  • Dutta K, Daverey A, Lin JG (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy 69:114–122

    Article  CAS  Google Scholar 

  • Ebrahimi M, Caparanga AR, Ordono EE, Villaflores OB (2017) Evaluation of organosolv pretreatment on the enzymatic digestibility of coconut coir fibers and bioethanol production via simultaneous saccharification and fermentation. Renew Energy 109:41–48

    Article  CAS  Google Scholar 

  • El-Mekkawi SA, Abdo SM, Samhan FA, Ali GH (2019) Optimization of some fermentation conditions for bioethanol production from microalgae using response surface method. Bull Natl Res Centre 43(1):164

    Article  Google Scholar 

  • El-Naggar NEA, Deraz S, Khalil A (2014) Bioethanol production from lignocellulosic feedstocks based on enzymatic hydrolysis: current status and recent developments. Biotechnology 13(1):1–21

    CAS  Google Scholar 

  • Erabi M, Goshadrou A (2020) Bioconversion of Glycyrrhiza glabra residue to ethanol by sodium carbonate pretreatment and separate hydrolysis and fermentation using Mucor hiemalis. Ind Crop Prod 152:112537

    Article  CAS  Google Scholar 

  • Fan LH, Zhang ZJ, Mei S, Lu YY, Li M, Wang ZY, Tan TW (2016) Engineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugars. Biotechnol Biofuels 9(1):137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farinas CS, Marconcini JM, Mattoso LHC (2018) Enzymatic conversion of sugarcane lignocellulosic biomass as a platform for the production of ethanol, enzymes and nanocellulose. J Renew Mater 6(2):203–216

    Article  CAS  Google Scholar 

  • Ferreira V, Faber MDO, Mesquita SDS, Pereira N Jr (2010) Simultaneous saccharification and fermentation process of different cellulosic substrates using a recombinant Saccharomyces cerevisiae harbouring the β-glucosidase gene. Electron J Biotechnol 13(2):5–6

    Article  CAS  Google Scholar 

  • Fullarton D, Schlünder EU (1986) Diffusion distillation-A new separation process for azeotropic mixtures part 1: selectivity and transfer efficiency. Chem Eng Process Process Intensif 20(5):255–263

    Article  CAS  Google Scholar 

  • Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78

    Article  CAS  Google Scholar 

  • Gil ID, Uyazán AM, Aguilar JL, Rodríguez G, Caicedo LA (2008) Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation. Braz J Chem Eng 25(1):207–215

    Article  CAS  Google Scholar 

  • Gökgöz M, Yiğitoğlu M (2011) Immobilization of saccharomyces cerevisiae on to modified carboxymethylcellulose for production of ethanol. Bioprocess Biosyst Eng 34(7):849–857

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves FA, Ruiz HA, da Costa Nogueira C, dos Santos ES, Teixeira JA, de Macedo GR (2014) Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel 131:66–76

    Article  CAS  Google Scholar 

  • Guilherme AA, Dantas PVF, Santos ES, Fernandes FAN, Macedo GR (2015) Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Braz J Chem Eng 32(1):23–33

    Article  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85(2):199–203

    CAS  Google Scholar 

  • Hassan SS, Ravindran R, Jaiswal S, Tiwari BK, Williams GA, Jaiswal AK (2020) An evaluation of sonication pretreatment for enhancing saccharification of brewers’ spent grain. Waste Manag 105:240–247

    Article  CAS  PubMed  Google Scholar 

  • Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47(9):1287–1294

    Article  CAS  Google Scholar 

  • He Q, Hemme CL, Jiang H, He Z, Zhou J (2011) Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. Bioresour Technol 102(20):9586–9592

    Article  CAS  PubMed  Google Scholar 

  • Heredia-Olea E, Pérez-Carrillo E, Montoya-Chiw M, Serna-Saldívar SO (2015) Effects of extrusion pretreatment parameters on sweet sorghum bagasse enzymatic hydrolysis and its subsequent conversion into bioethanol. Biomed Res Int 2015:325905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirani AH, Javed N, Asif M, Basu SK, Kumar A (2018) A review on first-and second-generation biofuel productions. In: Kumar A, Ogita S, Yau YY (eds) Biofuels: greenhouse gas mitigation and global warming. Springer, New Delhi, pp 141–154

    Google Scholar 

  • Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38(3):369–378

    Article  CAS  Google Scholar 

  • Inal M, Yiğitoğlu M (2011) Production of bioethanol by immobilized Saccharomyces cerevisiae onto modified sodium alginate gel. J Chem Technol Biotechnol 86(12):1548–1554

    Article  CAS  Google Scholar 

  • Irmak S, Meryemoglu B, Sandip A, Subbiah J, Mitchell RB, Sarath G (2018) Microwave pretreatment effects on switchgrass and miscanthus solubilization in subcritical water and hydrolysate utilization for hydrogen production. Biomass Bioenergy 108:48–54

    Article  CAS  Google Scholar 

  • Iroba KL, Tabil LG, Sokhansanj S, Dumonceaux T (2014) Pretreatment and fractionation of barley straw using steam explosion at low severity factor. Biomass Bioenergy 66:286–300

    Article  CAS  Google Scholar 

  • Ivetić DŽ, Omorjan RP, Đorđević TR, Antov MG (2017) The impact of ultrasound pretreatment on the enzymatic hydrolysis of cellulose from sugar beet shreds: modeling of the experimental results. Environ Prog Sustain Energy 36(4):1164–1172

    Article  CAS  Google Scholar 

  • Jahnavi G, Prashanthi GS, Sravanthi K, Rao LV (2017) Status of availability of lignocellulosic feed stocks in India: biotechnological strategies involved in the production of bioethanol. Renew Sust Energ Rev 73:798–820

    Article  CAS  Google Scholar 

  • Jambo SA, Abdulla R, Azhar SHM, Marbawi H, Gansau JA, Ravindra P (2016) A review on third generation bioethanol feedstock. Renew Sust Energ Rev 65:756–769

    Article  CAS  Google Scholar 

  • Ji H, Yu J, Zhang X, Tan T (2012) Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol. Appl Biochem Biotechnol 168(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Wu R, Zhou J, He A, Xu J, **n F, Dong W (2019) Recent advances of biofuels and biochemicals production from sustainable resources using co-cultivation systems. Biotechnol Biofuels 12(1):155

    Article  PubMed  PubMed Central  Google Scholar 

  • ** M, Balan V, Gunawan C, Dale BE (2011) Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol Bioeng 108(6):1290–1297

    Article  CAS  PubMed  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102(1):186–193

    Article  CAS  PubMed  Google Scholar 

  • Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Wagschal K (2012) Plant cell walls to ethanol. Biochem J 442(2):241–252

    Article  CAS  PubMed  Google Scholar 

  • Jugwanth Y, Sewsynker-Sukai Y, Kana EG (2020) Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: optimization and kinetic studies. Fuel 262:116552

    Article  CAS  Google Scholar 

  • Kaar WE, Gutierrez CV, Kinoshita CM (1998) Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol. Biomass Bioenergy 14(3):277–287

    Article  CAS  Google Scholar 

  • Kang KE, Jeong GT, Park DH (2012) Pretreatment of rapeseed straw by sodium hydroxide. Bioprocess Biosyst Eng 35(5):705–713

    Article  CAS  PubMed  Google Scholar 

  • Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J 2014:298153

    Article  Google Scholar 

  • Kang KE, Chung DP, Kim Y, Chung BW, Choi GW (2015) High-titer ethanol production from simultaneous saccharification and fermentation using a continuous feeding system. Fuel 145:18–24

    Article  CAS  Google Scholar 

  • Karagöz P, Özkan M (2014) Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system. Bioresour Technol 158:286–293

    Article  PubMed  CAS  Google Scholar 

  • Karunanithy C, Muthukumarappan K (2010) Influence of extruder temperature and screw speed on pretreatment of corn stover while varying enzymes and their ratios. Appl Biochem Biotechnol 162(1):264–279

    Article  CAS  PubMed  Google Scholar 

  • Kasavi C, Finore I, Lama L, Nicolaus B, Oliver SG, Toksoy Oner E, Kirdar B (2012) Evaluation of industrial Saccharomyces cerevisiae strains for ethanol production from biomass. Biomass Bioenergy 45:230–238

    Article  CAS  Google Scholar 

  • Katsimpouras C, Zacharopoulou M, Matsakas L, Rova U, Christakopoulos P, Topakas E (2017) Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover. Bioresour Technol 244:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi H, Hasunuma T, Ogino C, Kondo A (2016) Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42:30–39

    Article  CAS  PubMed  Google Scholar 

  • Keshav PK, Naseeruddin S, Rao LV (2016) Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol. Bioresour Technol 214:363–370

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Taylor F, Hicks KB (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99(13):5694–5702

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Chae SW, Park DH, Sunwoo C (2010) Pretreatment of gelidium amansii for the production of bioethanol. Bull Kor Chem Soc 13:511–513

    Article  CAS  Google Scholar 

  • Kim HJ, Lee S, Kim J, Mitchell RJ, Lee JH (2013) Environmentally friendly pretreatment of plant biomass by planetary and attrition milling. Bioresour Technol 144:50–56

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48

    Article  CAS  PubMed  Google Scholar 

  • Kirdponpattara S, Phisalaphong M (2013) Bacterial cellulose–alginate composite sponge as a yeast cell carrier for ethanol production. Biochem Eng J 77:103–109

    Article  CAS  Google Scholar 

  • Klein M, Griess O, Pulidindi IN, Perkas N, Gedanken A (2016) Bioethanol production from Ficus religiosa leaves using microwave irradiation. J Environ Manag 177:20–25

    Article  CAS  Google Scholar 

  • Koppram R, Nielsen F, Albers E, Lambert A, Wännström S, Welin L, Olsson L (2013) Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnol Biofuels 6(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23(11):2937

    Article  PubMed Central  CAS  Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Singh N, Prasad R (2010) Anhydrous ethanol: a renewable source of energy. Renew Sust Energ Rev 14(7):1830–1844

    Article  CAS  Google Scholar 

  • Kumar B, Bhardwaj N, Verma P (2019) Pretreatment of rice straw using microwave assisted FeCl3-H3PO4 system for ethanol and oligosaccharides generation. Bioresour Technol Rep 7:100295

    Article  Google Scholar 

  • Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sust Energ Rev 90:877–891

    Article  CAS  Google Scholar 

  • Lakatos GE, Ranglová K, Manoel JC, Grivalský T, Kopecký J, Masojídek J (2019) Bioethanol production from microalgae polysaccharides. Folia Microbiol 64(5):627–644

    Article  CAS  Google Scholar 

  • Lee WC, Kuan WC (2015) Miscanthus as cellulosic biomass for bioethanol production. Biotechnol J 10(6):840–854

    Article  CAS  PubMed  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467

    Article  CAS  Google Scholar 

  • Linger JG, Adney WS, Darzins A (2010) Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl Environ Microbiol 76(19):6360–6369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Chen H (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM] Cl. Chin Sci Bull 51(20):2432–2436

    Article  CAS  Google Scholar 

  • Liu ZH, Chen HZ (2016) Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresour Technol 201:15–26

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Sun B, Zheng X, Yu L, Li J (2018) Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresour Technol 247:859–863

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhang Z, Wang J, Fan Y, Shi W, Liu X, Shun Q (2019) Simultaneous saccharification and co-fermentation of corn stover pretreated by H2O2 oxidative degradation for ethanol production. Energy 168:946–952

    Article  CAS  Google Scholar 

  • Longati AA, Cruz AJG (2018) Modelling, simulation and economic analysis of the vinasse anaerobic digestion in a sugarcane biorefinery. In: Zuin VG (ed) Environments: technoscience and its relation to sustainability, ethics, aesthetics, health and the human future. EdUFSCar, São Carlos, pp 189–202

    Google Scholar 

  • Loow YL, Wu TY, Tan KA, Lim YS, Siow LF, Jahim M, Teoh WH (2015) Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. J Agric Food Chem 63(38):8349–8363

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Li X, Yang R, Yang L, Zhao J, Liu Y, Qu Y (2013) Fed-batch semi-simultaneous saccharification and fermentation of reed pretreated with liquid hot water for bio-ethanol production using Saccharomyces cerevisiae. Bioresour Technol 144:539–547

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Zhang Y, Bao J (2014) Extracellular secretion of β-glucosidase in ethanologenic E. coli enhances ethanol fermentation of cellobiose. Appl Biochem Biotechnol 174(2):772–783

    Article  CAS  PubMed  Google Scholar 

  • Luque L, Westerhof R, Van Rossum G, Oudenhoven S, Kersten S, Berruti F, Rehmann L (2014) Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass. Bioresour Technol 161:20–28

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26(2):169–172

    Article  CAS  PubMed  Google Scholar 

  • Madadi M, Tu Y, Abbas A (2017) Recent status on enzymatic saccharification of lignocellulosic biomass for bioethanol production. Electron J Biol 13(2):135–143

    Google Scholar 

  • Mafe OA, Davies SM, Hancock J, Du C (2015) Development of an estimation model for the evaluation of the energy requirement of dilute acid pretreatments of biomass. Biomass Bioenergy 72:28–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maki ML, Armstrong L, Leung KT, Qin W (2013) Increased expression of β-glucosidase A in Clostridium thermocellum 27405 significantly increases cellulase activity. Bioengineered 4(1):15–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Manochio C, Andrade BR, Rodriguez RP, Moraes BS (2017) Ethanol from biomass: a comparative overview. Renew Sust Energ Rev 80:743–755

    Article  Google Scholar 

  • Martin C, Alriksson B, Sjöde A, Nilvebrant NO, Jönsson LJ (2007) Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. In: Applied biochemistry and biotechnology. Humana Press, Totowa, pp 339–352

    Chapter  Google Scholar 

  • Masran R, Zanirun Z, Bahrin EK, Ibrahim MF, Yee PL, Abd-Aziz S (2016) Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment. Appl Microbiol Biotechnol 100(12):5231–5246

    Article  CAS  PubMed  Google Scholar 

  • Mathew AK, Parameshwaran B, Sukumaran RK, Pandey A (2016) An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production. Bioresour Technol 199:13–20

    Article  CAS  PubMed  Google Scholar 

  • Matsakas L, Raghavendran V, Yakimenko O, Persson G, Olsson E, Rova U, Christakopoulos P (2019) Lignin-first biomass fractionation using a hybrid organosolv–Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresour Technol 273:521–528

    Article  CAS  PubMed  Google Scholar 

  • Mattila H, Kuuskeri J, Lundell T (2017) Single-step, single-organism bioethanol production and bioconversion of lignocellulose waste materials by phlebioid fungal species. Bioresour Technol 225:254–261

    Article  CAS  PubMed  Google Scholar 

  • McIntosh S, Zhang Z, Palmer J, Wong HH, Doherty WO, Vancov T (2016) Pilot-scale cellulosic ethanol production using eucalyptus biomass pre-treated by dilute acid and steam explosion. Biofuels Bioprod Biorefin 10(4):346–358

    Article  CAS  Google Scholar 

  • Mikulski D, Kłosowski G (2018) Efficiency of dilute sulfuric acid pretreatment of distillery stillage in the production of cellulosic ethanol. Bioresour Technol 268:424–433

    Article  CAS  PubMed  Google Scholar 

  • Mikulski D, Kłosowski G (2020) Microwave-assisted dilute acid pretreatment in bioethanol production from wheat and rye stillages. Biomass Bioenergy 136:105528

    Article  CAS  Google Scholar 

  • Mikulski D, Kłosowski G, Menka A, Koim-Puchowska B (2019) Microwave-assisted pretreatment of maize distillery stillage with the use of dilute sulfuric acid in the production of cellulosic ethanol. Bioresour Technol 278:318–328

    Article  CAS  PubMed  Google Scholar 

  • Mirahmadi K, Kabir MM, Jeihanipour A, Karimi K, Taherzadeh M (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. Bioresources 5(2):928–938

    CAS  Google Scholar 

  • Mitchell RB, Schmer MR, Anderson WF, ** V, Balkcom KS, Kiniry J, White P (2016) Dedicated energy crops and crop residues for bioenergy feedstocks in the central and eastern USA. Bioenergy Res 9(2):384–398

    Article  Google Scholar 

  • Mohapatra S, Behera BC, Acharya AN (2020a) Bioethanol production from Pennisetum sp. using fed-batch simultaneous saccharification and co-fermentation at high solid loadings and its life cycle analysis. Res Square 2020:1–21

    Google Scholar 

  • Mohapatra S, Jena S, Jena PK, Badhai J, Acharya AN, Thatoi H (2020b) Partial consolidated bioprocessing of pretreated Pennisetum sp. by anaerobic thermophiles for enhanced bioethanol production. Chemosphere 2020:127126

    Article  CAS  Google Scholar 

  • Morales-Rodriguez R, Gernaey KV, Meyer AS, Sin G (2011) A mathematical model for simultaneous saccharification and co-fermentation (SSCF) of C6 and C5 sugars. Chin J Chem Eng 19(2):185–191

    Article  CAS  Google Scholar 

  • Motte JC, Escudié R, Hamelin J, Steyer JP, Bernet N, Delgenes JP, Dumas C (2014) Substrate milling pretreatment as a key parameter for solid-state anaerobic digestion optimization. Bioresour Technol 173:185–192

    Article  CAS  PubMed  Google Scholar 

  • Muley PD, Mobley JK, Tong X, Novak B, Stevens J, Moldovan D, Boldor D (2019) Rapid microwave-assisted biomass delignification and lignin depolymerization in deep eutectic solvents. Energy Convers Manag 196:1080–1088

    Article  CAS  Google Scholar 

  • Mussatto SI, Teixeira JA (2010) Lignocellulose as raw material in fermentation processes. Appl Microbiol Biotechnol 2:897–907

    Google Scholar 

  • Nigam PS, Singh A (2010) Production of liquid biofuels from renewable resources. Prog Energ Combust 37(1):52–68

    Article  CAS  Google Scholar 

  • Ninomiya K, Utami ARI, Tsuge Y, Kuroda K, Ogino C, Taima T, Saito J, Takahashi K (2018) Pretreatment of bagasse with a minimum amount of cholinium ionic liquid for subsequent saccharification at high loading and co-fermentation for ethanol production. Chem Eng J 334:657–663

    Article  CAS  Google Scholar 

  • Nitsos C, Rova U, Christakopoulos P (2018) Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energies 11(1):50–72

    Article  CAS  Google Scholar 

  • Noori MS, Karimi K (2016) Chemical and structural analysis of alkali pretreated pinewood for efficient ethanol production. RSC Adv 6(70):65683–65690

    Article  CAS  Google Scholar 

  • Oliveira FMV, Pinheiro IO, Souto-Maior AM, Martin C, Goncalves AR, Rocha GJM (2013) Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour Technol 130:168–173

    Article  CAS  PubMed  Google Scholar 

  • Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF–an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23(3):396–405

    Article  CAS  PubMed  Google Scholar 

  • Ooshima H, Aso K, Harano Y, Yamamoto TJBL (1984) Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnol Lett 6(5):289–294

    Article  CAS  Google Scholar 

  • Ozdenkci K, De Blasio C, Muddassar HR, Melin K, Oinas P, Koskinen J, Sarwar G, Jarvinen M (2017) A novel biorefinery integration concept for lignocellulosic biomass. Energy Convers Manag 149:974–987

    Article  CAS  Google Scholar 

  • Parada MP, Osseweijer P, Duque JAP (2017) Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. Ind Crop Prod 106:105–123

    Article  CAS  Google Scholar 

  • Paul S, Dutt A (2018) Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl 130:164–174

    Article  Google Scholar 

  • Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K (2015) Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol Adv 33(6):1091–1107

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Yahya PP, Zhang F, Del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328

    Article  CAS  PubMed  Google Scholar 

  • Phanthong P, Guan G, Ma Y, Hao X, Abudula A (2016) Effect of ball milling on the production of nanocellulose using mild acid hydrolysis method. J Taiwan Inst Chem Eng 60:617–622

    Article  CAS  Google Scholar 

  • Pin TC, Nakasu PY, Mattedi S, Rabelo SC, Costa AC (2019) Screening of protic ionic liquids for sugarcane bagasse pretreatment. Fuel 235:1506–1514

    Article  CAS  Google Scholar 

  • Pitarelo AP, Fonseca CSD, Chiarello LM, Gírio FM, Ramos LP (2016) Ethanol production from sugarcane bagasse using phosphoric acid-catalyzed steam explosion. J Braz Chem Soc 27(10):1889–1898

    CAS  Google Scholar 

  • Pooja NS, Sajeev MS, Jeeva ML, Padmaja G (2018) Bioethanol production from microwave-assisted acid or alkali-pretreated agricultural residues of cassava using separate hydrolysis and fermentation (SHF). 3 Biotech 8(1):69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procentese A, Johnson E, Orr V, Garruto CA, Wood JA, Marzocchella A, Rehmann L (2015) Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol 192:31–36

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang J (2018) Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. Bioresour Technol 268:355–362

    Article  CAS  PubMed  Google Scholar 

  • Radenkovs V, Juhnevica-Radenkova K, Górnaś P, Seglina D (2018) Non-waste technology through the enzymatic hydrolysis of agro-industrial by-products. Trends Food Sci Technol 77:64–76

    Article  CAS  Google Scholar 

  • Raj T, Gaur R, Lamba BY, Singh N, Gupta RP, Kumar R, Puri SK, Ramakumar SSV (2018) Characterization of ionic liquid pretreated plant cell wall for improved enzymatic digestibility. Bioresour Technol 249:139–145

    Article  CAS  PubMed  Google Scholar 

  • Rajendran K, Drielak E, Varma V, Muthusamy S, Kumar G (2017) Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review. Biomass Convers Biorefinery 8:1–13

    Google Scholar 

  • Ramaraj R, Unpaprom Y (2019) Enzymatic hydrolysis of small-flowered nutsedge (Cyperus difformis) with alkaline pretreatment for bioethanol production. Maejo Int J Sci Technol 13(2):110–120

    CAS  Google Scholar 

  • Rastogi M, Shrivastava S (2018) Current methodologies and advances in bio-ethanol production. J Biotechnol Bioresour 1(1):1–8

    Google Scholar 

  • Rollag SA, Lindstrom JK, Brown RC (2020) Pretreatments for the continuous production of pyrolytic sugar from lignocellulosic biomass. Chem Eng J 385:123889

    Article  CAS  Google Scholar 

  • Saha BC, Nichols NN, Qureshi N, Cotta MA (2011) Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5. Appl Microbiol Biotechnol 92(4):865

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Kennedy GJ, Qureshi N, Cotta MA (2017) Biological pretreatment of corn stover with Phlebia brevispora NRRL-13108 for enhanced enzymatic hydrolysis and efficient ethanol production. Biotechnol Prog 33(2):365–374

    Article  CAS  PubMed  Google Scholar 

  • Sahoo D, Ummalyma SB, Okram AK, Pandey A, Sankar M, Sukumaran RK (2018) Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. Bioresour Technol 253:252–255

    Article  CAS  PubMed  Google Scholar 

  • Sahu S, Pramanik K (2018) Evaluation and optimization of organic acid pretreatment of cotton gin waste for enzymatic hydrolysis and bioethanol production. Appl Biochem Biotechnol 186(4):1047–1060

    Article  CAS  PubMed  Google Scholar 

  • Salapa I, Katsimpouras C, Topakas E, Sidiras D (2017) Organosolv pretreatment of wheat straw for efficient ethanol production using various solvents. Biomass Bioenergy 100:10–16

    Article  CAS  Google Scholar 

  • Salehi Jouzani G, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J 2(1):152–195

    Article  Google Scholar 

  • Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  PubMed  CAS  Google Scholar 

  • Satari B, Jaiswal AK (2020) Green fractionation of 2G and 3G feedstocks for ethanol production: advances, incentives and barriers. Curr Opin Food Sci 37:1–9

    Google Scholar 

  • Schell DJ, Farmer J, Newman M, Mc Millan JD (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor. Appl Biochem Biotechnol 105(1-3):69–85

    Article  PubMed  Google Scholar 

  • Seidl PR, Goulart AK (2016) Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Curr Opin Green Sustainable Chem 2:48–53

    Article  Google Scholar 

  • Serna LD, Alzate CO, Alzate CC (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120

    Article  CAS  Google Scholar 

  • Shapouri H, Gallagher PW, Nefstead W, Schwartz R, Noe S, Conway R (2008) Energy balance for the corn-ethanol industry. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Sharma R, Palled V, Sharma-Shivappa RR, Osborne J (2013) Potential of potassium hydroxide pretreatment of switchgrass for fermentable sugar production. Appl Biochem Biotechnol 169(3):761–772

    Article  CAS  PubMed  Google Scholar 

  • Shaw AJ, Covalla SF, Miller BB, Firliet BT, Hogsett DA, Herring CD (2012) Urease expression in a thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production. Metab Eng 14(5):528–532

    Article  PubMed  CAS  Google Scholar 

  • Shirkavand E, Baroutian S, Gapes DJ, Young BR (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment–a review. Renew Sust Energ Rev 54:217–234

    Article  CAS  Google Scholar 

  • Silva FM, Mahler CF, Oliveira LB, Bassin JP (2018) Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol. Waste Manag 76:339–349

    Article  CAS  PubMed  Google Scholar 

  • Sindhu R, Kuttiraja M, Binod P, Sukumaran RK, Pandey A (2014) Bioethanol production from dilute acid pretreated Indian bamboo variety (Dendrocalamus sp.) by separate hydrolysis and fermentation. Ind Crop Prod 52:169–176

    Article  CAS  Google Scholar 

  • Sivamani S, Baskar R (2018) Bioconversion of cassava stem to ethanol: oxalic acid pretreatment and co-culture fermentation. Biofuels 9(5):559–566

    Article  CAS  Google Scholar 

  • Sritrakul N, Nitisinprasert S, Keawsompong S (2017) Evaluation of dilute acid pretreatment for bioethanol fermentation from sugarcane bagasse pith. Agric Nat Resour 51(6):512–519

    Google Scholar 

  • Su Y, Yu X, Sun Y, Wang G, Chen H, Chen G (2018) Evaluation of screened lignin-degrading fungi for the biological pretreatment of corn stover. Sci Rep 8(1):1–11

    Article  Google Scholar 

  • Subhedar PB, Ray P, Gogate PR (2018) Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation. Ultrason Sonochem 40:140–150

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Chen H (2008) Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. Bioresour Technol 99(14):6156–6161

    Article  CAS  PubMed  Google Scholar 

  • Sun JX, Sun R, Sun XF, Su Y (2004) Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydr Res 339(2):291–300

    Article  CAS  PubMed  Google Scholar 

  • Sun YG, Ma YL, Wang LQ, Wang FZ, Wu QQ, Pan GY (2015) Physicochemical properties of corn stalk after treatment using steam explosion coupled with acid or alkali. Carbohydr Polym 117:486–493

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Sun S, Cao X, Sun R (2016a) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58

    Article  CAS  PubMed  Google Scholar 

  • Sun FF, Zhao X, Hong J, Tang Y, Wang L, Sun H, Hu J (2016b) Industrially relevant hydrolyzability and fermentability of sugarcane bagasse improved effectively by glycerol organosolv pretreatment. Biotechnol Biofuels 9(1):59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suriapparao DV, Vinu R, Shukla A, Haldar S (2020) Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation. Bioresour Technol 302:122775

    Article  CAS  PubMed  Google Scholar 

  • Taha M, Shahsavari E, Al-Hothaly K, Mouradov A, Smith AT, Ball AS, Adetutu EM (2015) Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms. Appl Biochem Biotechnol 175(8):3709–3728

    Article  CAS  PubMed  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2(4):707–738

    CAS  Google Scholar 

  • Tang C, Shan J, Chen Y, Zhong L, Shen T, Zhu C, Ying H (2017) Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin. Bioresour Technol 232:222–228

    Article  CAS  PubMed  Google Scholar 

  • Tavva SMD, Deshpande A, Durbha SR, Palakollu VAR, Goparaju AU, Yechuri VR, Muktinutalapati VSR (2016) Bioethanol production through separate hydrolysis and fermentation of Parthenium hysterophorus biomass. Renew Energy 86:1317–1323

    Article  CAS  Google Scholar 

  • Tayyab M, Noman A, Islam W, Waheed S, Arafat Y, Ali F, Lin W (2018) Bioethanol production from lignocellulosic biomass by environment-friendly pretreatment methods: a review. Appl Ecol Environ Res 16:225–249

    Article  Google Scholar 

  • Tian D, Guo Y, Hu J, Yang G, Luo L, **ao Y, Shen F (2020) Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity. Int J Biol Macromol 142:288–297

    Article  CAS  PubMed  Google Scholar 

  • Ueda R, Hirayama S, Sugata K, Nakayama H (1996) Process for the production of ethanol from microalgae. US Patent 5:578–472

    Google Scholar 

  • Ungurean M, Fitigau F, Paul C, Ursoiu A, Peter F (2011) Ionic liquid pretreatment and enzymatic hydrolysis of wood biomass. World Acad Sci Eng Technol 52:387–391

    Google Scholar 

  • Vergara P, Wojtusik M, Revilla E, Ladero M, Garcia-Ochoa F, Villar JC (2018) Wheat straw fractionation by ethanol-water mixture: Optimization of operating conditions and comparison with diluted sulfuric acid pre-treatment. Bioresour Technol 256:178–186

    Article  CAS  PubMed  Google Scholar 

  • Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2(1):573–584

    Article  CAS  Google Scholar 

  • Vuong TV, Master ER (2020) Enzymatic production of 4-O-methyl d-glucaric acid from hardwood xylan. Biotechnol Biofuels 13(1):1–10

    Article  CAS  Google Scholar 

  • Waghmare PR, Khandare RV, Jeon BH, Govindwar SP (2018) Enzymatic hydrolysis of biologically pretreated sorghum husk for bioethanol production. Biofuel Res J 5(3):846–853

    Article  CAS  Google Scholar 

  • Wee SL, Tye CT, Bhatia S (2008) Membrane separation process—pervaporation through zeolite membrane. Sep Purif Technol 63(3):500–516

    Article  CAS  Google Scholar 

  • Werlang EB, Julich J, Muller MV, de Farias Neves F, Sierra-Ibarra E, Martinez A, Schneider RDCDS (2020) Bioethanol from hydrolyzed Spirulina (Arthrospira platensis) biomass using ethanologenic bacteria. Bioresour Bioprocess 7(1):1–9

    Article  Google Scholar 

  • Winkelhausen E, Velickova E, Amartey SA, Kuzmanova S (2010) Ethanol production using immobilized Saccharomyces cerevisiae in lyophilized cellulose gel. Appl Biochem Biotechnol 162(8):2214–2220

    Article  CAS  PubMed  Google Scholar 

  • Wu B, He MX, Feng H, Shui ZX, Tang XY, Hu QC, Zhang YZ (2014) Construction of a novel secretion expression system guided by native signal peptide of PhoD in Zymomonas mobilis. Biosci Biotechnol Biochem 78(4):708–713

    Article  CAS  PubMed  Google Scholar 

  • **a J, Yang Y, Liu CG, Yang S, Bai FW (2019) Engineering Zymomonas mobilis for robust cellulosic ethanol production. Trends Biotechnol 37(9):960–972

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Sun J, Wehrs M, Kim KH, Rau SS, Chan AM, Singh S (2018) Biocompatible choline-based deep eutectic solvents enable one-pot production of cellulosic ethanol. ACS Sustain Chem Eng 6(7):8914–8919

    Article  CAS  Google Scholar 

  • Yamada R, Nakashima K, Asai-Nakashima N, Tokuhara W, Ishida N, Katahira S, Kamiya N, Ogino C, Kondo A (2017) Direct ethanol production from ionic liquid-pretreated lignocellulosic biomass by cellulase-displaying yeasts. Appl Biochem Biotechnol 182(1):229–237

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa CK, Qin F, Mussatto SI (2018) Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass Bioenergy 119:54–60

    Article  CAS  Google Scholar 

  • Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Adams MW (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “Anaerocellum thermophilum” DSM 6725. Appl Environ Microbiol 75(14):4762–4769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774

    Article  CAS  Google Scholar 

  • Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev 71:475–501

    Article  CAS  Google Scholar 

  • Zabed HM, Akter S, Yun J, Zhang G, Awad FN, Qi X, Sahu JN (2019) Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew Sust Energ Rev 105:105–128

    Article  CAS  Google Scholar 

  • Zabochnicka-Świątek M, Sławik L (2010) Bioethanol-production and utilization. Arch Combust 30(3):237–246

    Google Scholar 

  • Zakaria MR, Norrrahim MNF, Hirata S, Hassan MA (2015) Hydrothermal and wet disk milling pretreatment for high conversion of biosugars from oil palm mesocarp fiber. Bioresour Technol 181:263–269

    Article  CAS  PubMed  Google Scholar 

  • Zámocký M, Gasselhuber B, Furtmüller PG, Obinger C (2014) Turning points in the evolution of peroxidase–catalase superfamily: molecular phylogeny of hybrid heme peroxidases. Cell Mol Life Sci 71(23):4681–4696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol 100(9):2580–2587

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Lis M (2020) Modeling green energy development based on sustainable economic growth in China. Sustain For 12(4):1368

    Article  CAS  Google Scholar 

  • Zhao Y, Wang Y, Zhu JY, Ragauskas A, Deng Y (2008) Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol Bioeng 99(6):1320–1328

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Shao Q, Ma Z, Li B, Zhao X (2016) Physical and chemical characterizations of corn stalk resulting from hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment. Ind Crop Prod 83:86–93

    Article  CAS  Google Scholar 

  • Zhao C, Qiao X, Cao Y, Shao Q (2017) Application of hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment of energy crops. Fuel 205:184–191

    Article  CAS  Google Scholar 

  • Zheng Y, Lin H, Wen J (1995) Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol Lett 14:845–850

    Article  Google Scholar 

  • Zhu Z, Rezende CA, Simister R, McQueen-Mason SJ, Macquarrie DJ, Polikarpov I, Gomez LD (2016) Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass Bioenergy 93:269–278

    Article  CAS  Google Scholar 

  • Zuroff TR, **ques SB, Curtis WR (2013) Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol Biofuels 6(1):59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreedevi Sarsan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarsan, S., K, V.V.R., A, V.R., Jagavati, S. (2021). Advances in Bioethanol Production: Processes and Technologies. In: Srivastava, M., Srivastava, N., Singh, R. (eds) Bioenergy Research: Commercial Opportunities & Challenges . Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-1190-2_7

Download citation

Publish with us

Policies and ethics

Navigation