A Review on Solar PV Cell and Its Evolution

  • Conference paper
  • First Online:
Latest Trends in Renewable Energy Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 760))

  • 849 Accesses

Abstract

Solar energy is fast emerging as a very effective process of power generation from the domain of renewable energy. A solar PV cell is the most crucial part of a solar energy system. The power generated by a PV system relies on many aspects. One of the important factors is solar PV cell materials that have a major bearing on its conversion efficiency. Therefore, this paper presents a detailed review of these materials that have evolved over the years. Their classification into different generations is presented along with its basic structure to give the researchers a jump start into this domain. Also, a detailed comparison of their efficiencies, merits, demerits, cost etc. is showcased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. (EIA), U.S.E.I.A.: International Energy Outlook 2019 (IEO2019). https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf. Accessed 24 Sept 2019

  2. IRENA: Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation: paper). In. International Renewable Energy Agency, Abu Dhabi, (2019)

    Google Scholar 

  3. C.W. Tang, Two-layer organic photovoltaic cell. Appl. Phys. Lett. ((United States), Medium: X; Size:) 183–185 (1986)

    Google Scholar 

  4. J. Rostalski, D. Meissner, Monochromatic versus solar efficiencies of organic solar cells. Sol. Energy Mater. Sol. Cells 61(1), 87–95 (2000). https://doi.org/10.1016/s0927-0248(99)00099-9

    Article  Google Scholar 

  5. M. Abdulkadir, A.S. Samosir, A.H. Yatim, modeling and simulation based approach of photovoltaic system in simulink model, 2012

    Google Scholar 

  6. Y.H. Mahmood, F.S. Atallah, A.F. Youssef, Studying the weather condition affecting on solar panel efficiency. Tikrit J. Pure Sci. 25(3), 98–102 (2020). https://doi.org/10.25130/j.v25i3.995

    Article  Google Scholar 

  7. N. Abdullahi, C. Saha, R. **ks, Modelling and performance analysis of a silicon PV module. J. Renew. Sustain. Energy 9, 033501 (2017). https://doi.org/10.1063/1.4982744

    Article  Google Scholar 

  8. F. Adamo, F. Attivissimo, A.D. Nisio, M. Spadavecchia, Characterization and testing of a tool for photovoltaic panel modeling. IEEE Trans. Instrum. Meas. 60(5), 1613–1622 (2011). https://doi.org/10.1109/TIM.2011.2105051

    Article  Google Scholar 

  9. N.-G. Park, efficiency perovskite solar cells: materials and devices engineering. Trans. Electr. Electron. Mater. 21(1), 1–15 (2020). https://doi.org/10.1007/s42341-019-00156-0

    Article  Google Scholar 

  10. P. Würfel, U. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts (Wiley, New York, 2016)

    Google Scholar 

  11. A. McEvoy, L. Castaner, T. Markvart, Solar Cells: Materials, Manufacture and Operation (Academic Press, 2012)

    Google Scholar 

  12. S. Sharma, K. Jain, A. Sharma, Solar cells: in research and applications—a review. Mater. Sci. Appl. 06, 1145–1155 (2015). doi:https://doi.org/10.4236/msa.2015.612113

  13. Y. Weiwei, W. Xusheng, Z. Feng, Z. Lingjun, 19.6% cast mono-MWT solar cells and 268 W modules, in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, 3–8 June 2012 (2012), pp. 1–5

    Google Scholar 

  14. S. Chih-Tang, K.A. Yamakawa, R. Lutwack, Effect of thickness on silicon solar cell efficiency. IEEE Trans. Electron. Devices 29(5), 903–908 (1982). https://doi.org/10.1109/T-ED.1982.20797

    Article  Google Scholar 

  15. P. Zheng, F.E. Rougieux, X. Zhang, J. Degoulange, R. Einhaus, P. Rivat, D.H.Macdonald, 21.1% UMG Silicon Solar Cells. IEEE J. Photovolt. 7(1), 58–61 (2017). doi:https://doi.org/10.1109/JPHOTOV.2016.2616192

  16. P. Jayakumar, Resource assessment handbook. Asia and Pacific Center for Transfer of Technology of the United Nations (2009)

    Google Scholar 

  17. F. Schindler, J. Schön , B. Michl, S. Riepe, P. Krenckel, J. Benick, F. Feldmann, M. Hermle, S.W. Glunz, W. Warta, M.C. Schubert, High efficiency multicrystalline silicon solar cells: potential of n-type do**, in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 14–19 June 2015 (2015), pp. 1–3

    Google Scholar 

  18. J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M.C. Schubert, M. Hermle, A.W. Bett, S.W. Glunz, High-efficiency n-type HP mc silicon solar cells. IEEE J. Photovolt. 7(5), 1171–1175 (2017). https://doi.org/10.1109/JPHOTOV.2017.2714139

    Article  Google Scholar 

  19. K. Chopra, P. Paulson, V. Dutta, Thin-film solar cells: an overview. Prog. Photovolt. 12, 69–92 (2004). https://doi.org/10.1002/pip.541

    Article  Google Scholar 

  20. D. Shi, Z. Guo, N. Bedford, 10 - Nanoenergy Materials, in Nanomaterials and Devices. ed. by D. Shi, Z. Guo, N. Bedford (William Andrew Publishing, Oxford, 2015), pp. 255–291

    Google Scholar 

  21. Y. Tawada, M. Kondo, H. Okamoto, Y. Hamakawa, Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells. Sol. Energy Mater.s 6(3), 299–315 (1982)

    Article  Google Scholar 

  22. S. Kim, J.-W. Chung, H. Lee, J. Park, Y. Heo, H.-M. Lee, Remarkable progress in thin- film silicon solar cells using high-efficiency triple-junction technology. Sol. Energy Mater. Sol. Cells 119, 26–35 (2013). https://doi.org/10.1016/j.solmat.2013.04.016

    Article  Google Scholar 

  23. B. Srinivas, S. Balaji, M. Nagendra Babu, Y. Reddy, Review on present and advance materials for solar cells. Int. J. Eng. Res.-Online 3, 178–182 (2015)

    Google Scholar 

  24. J. Lu, W. Liu, A. Lu, Y. Sun, J. Lu, Integration of solar cells on top of CMOS chips-Part II: CIGS solar cells. IEEE Trans. Electron Devices 58, 2620–2627 (2011). https://doi.org/10.1109/TED.2011.2156799

    Article  Google Scholar 

  25. P. Reinhard, F. Pianezzi, B. Bissig, A. Chirila, P. Blösch, S. Nishiwaki, S. Buecheler, A. Tiwari, Cu(In, Ga)Se2 thin-film solar cells and modules—a boost in efficiency due to potassium. IEEE J. Photovolt. 5, 656–663 (2015). https://doi.org/10.1109/JPHOTOV.2014.2377516

    Article  Google Scholar 

  26. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. Magorian Friedlmeier, M. Powalla, Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. physica status solidi (RRL) - Rapid Res. Lett. 9999 (2014). doi:https://doi.org/10.1002/pssr.201409520

  27. J.J. Becker, C.M. Campbell, Y. Zhao, M. Boccard, D. Mohanty, M. Lassise, E. Suarez, I. Bhat, Z.C. Holman, Y. Zhang, Monocrystalline CdTe/MgCdTe double-heterostructure solar cells with ZnTe hole contacts. IEEE J. Photovolt. 7(1), 307–312 (2017). https://doi.org/10.1109/JPHOTOV.2016.2626139

    Article  Google Scholar 

  28. A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, Polycrystalline CdTe thin films for photovoltaic applications. Prog. Cryst. Growth Charact. Mater. 52(4), 247–279 (2006). https://doi.org/10.1016/j.pcrysgrow.2006.09.001

    Article  Google Scholar 

  29. T. Baines, T.P. Shalvey, J.D. Major, 10 - CdTe solar cells, in A Comprehensive Guide to Solar Energy Systems, ed,. by Letcher, T.M., Fthenakis, V.M. (Academic Press, 2018), pp. 215–232

    Google Scholar 

  30. A. Gaur, G.N. Tiwari, Performance of photovoltaic modules of different solar cells. J. Sol. Energy 2013, 734581 (2013). https://doi.org/10.1155/2013/734581

    Article  Google Scholar 

  31. H. Tang, G. Lu, X. Yang, The role of morphology control in determining the performance of P3HT/C-70 bulk heterojunction polymer solar cells. IEEE J. Sel. Top. Quantum Electron. 16(6), 1725–1731 (2010). https://doi.org/10.1109/JSTQE.2010.2042034

    Article  Google Scholar 

  32. P. Bi, F. Zheng, H. **, W. Xu, L. Feng, X. Hao, Performance enhancement in polymer-based organic optoelectronic devices enabled by discontinuous metal interlayer. IEEE J. Photovolt. 6(6), 1522–1529 (2016). https://doi.org/10.1109/JPHOTOV.2016.2598257

    Article  Google Scholar 

  33. H. Yao, F. Bai, H. Hu, L. Arunagiri, J. Zhang, Y. Chen, H. Yu, S. Chen, T. Liu, J.Y.L. Lai, Y. Zou, H. Ade, H. Yan, Efficient all-polymer solar cells based on a new polymer acceptor achieving 10.3% power conversion efficiency. ACS Energy Lett. 4(2), 417–422 (2019). doi:https://doi.org/10.1021/acsenergylett.8b02114

  34. R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros, Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5(5), 865–871 (2005). https://doi.org/10.1021/nl0502672

    Article  Google Scholar 

  35. M. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen, Z. Li, New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. J. Phys. Chem. C 111(11), 4465–4472 (2007)

    Article  Google Scholar 

  36. M.H.K. Tafti, S.M. Sadeghzadeh, Dye sensitized solar cell efficiency improvement using TiO 2/nanodiamond nano composite. Sādhanā 43(7), 113 (2018)

    Article  Google Scholar 

  37. C. Ubani, M. Ibrahim, M. Teridi, Moving into the domain of perovskite sensitized solar cell. Renew. Sustain. Energy Rev. 72, 907–915 (2017)

    Article  Google Scholar 

  38. D. Shi, Y. Zeng, W. Shen, Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trap**. Sci. Rep. 5, 16504 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devesh Jaiswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaiswal, D., Mittal, M., Mittal, V. (2021). A Review on Solar PV Cell and Its Evolution. In: Vadhera, S., Umre, B.S., Kalam, A. (eds) Latest Trends in Renewable Energy Technologies. Lecture Notes in Electrical Engineering, vol 760. Springer, Singapore. https://doi.org/10.1007/978-981-16-1186-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1186-5_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1185-8

  • Online ISBN: 978-981-16-1186-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation